
JOURNAL OF SCIENCE AND ARTS

ON THE PARALLEL SOLUTION OF STOCHASTIC PARABOLIC
EQUATION

DUMITRU FANACHE

Abstract. The pricing of options is a very important problem encountered in financial domain.
The famous Black-Scholes model provides explicit closed form solution for the values of certain
(European style) call and put options. But for many other options, either there are no closed
form solution, or if such closed form solutions exist, the formulas exhibiting them are complicated
and difficult to evaluate accurately by conventional methods. To aim of this paper is to study
the possility of obtaining the numerical solution of the Black-Scholes equation in parallel, by
means of several processors, using the finite difference method. A comparison between the
complexity of the parallel algorithm and the serial one is given.

1. Introduction

It is well-known that the Black-Scholes equation is used in computing the value of an option.
In sume cases, e.g. a European options, it gives exact solutions, but for other, more complex,
numerical attempts are made in order to obtain an approximation of the solution. Several
numerical methods are used for solving the Black-Scholes equation.

A European call option is a contract such that the owner may (without obligation) buy some
prescribed asset (called the underlying) S at a prescribed time (expiry date) T at a prescribed
price (exercice or strike price) K, the risk-free interest rate r (is an idealized interest rate). A
European put option is the same as call option, except that “buy” is replaced by “sell”.

2. Black-Scholes Model for evaluating a option price

The well-known Black-Scholes model for a European call option can be described ([7])or [5]
by the following (diffusion-type) partial differential equation (PDE) for this value:

(1)
∂f

∂t
+

1
2
σ2S2 ∂2f

∂S2
+ rS

∂f

∂S
− rf = 0

with final condition

(2) f (S, T) = max (S −K, 0)

and boundary conditions

(3) f (0, t) = 0, f (S, t) ∼ S as S →∞

The European put option satisfies the same equation as (2), but with final condition

(4) f (S, T) = max (K − S, 0)

and boundary conditions

(5) f (0, t) = Ke−r(T−t), f (S, t) ∼ 0 as S →∞

In both cases, there are explicit closed form solution. For the call option, the solution is

(6) f (S, t) = C (S, t) = SN (d1)−Ke−r(T−t)N (d2)

27

JOURNAL OF SCIENCE AND ARTS

with

(7) d1 =
ln S

K +
(
r + σ2

2

)
(T − t)

σ
√

T − t
, d2 = d1 − σ

√
T − t

and N (z) is the cumulative distribution function of the standard normal distribution. For the
put option,

(8) f (S, t) = P (S, t) = Ke−r(T−t)N − (d2)− SN (−d1)

with the same d1, d2, and N(z). For most other style option, however, there are no known
closed form solution. Thus, approximate method and numerical methods, such as lattice meth-
ods ([3], [4]) and finite difference methods ([6]) are used estimate their values.

2.1 Log transform of Black Scholes equation. When S is a stock price, it is efficient
to use lnS rather than S as the underlying variable when finite difference methods are applied.
This is because when σ is constant, the instantaneous standard deviation of lnS is constant.
The standard deviation of changes in lnS in a time interval ∆t is independent of S and t([7]).

We define y = ln S andf (t, S) = g (t, y) as the price of the call at time t. This is the price of
the call in terms of the transformed asset price and time. We price the call in terms of the log
of the asset price and time t.

We drop the y and t notations and subsitute: ∂f
∂S = ∂g

∂ye−y, ∂2f
∂S2 =

[
∂2g
∂y2 − ∂g

∂y

]
e−2y, ∂f

∂t = ∂g
∂t

into (1) to obtain

(9)
∂g

∂t
+

(
r − 1

2
σ2

)
∂g

∂y
+

1
2
σ2 ∂2g

∂y2
− rg = 0

We partition reasonable range of the log of the asset price into finite intervals with {y0, y1, . . . , yM}
equally spaced M+1 grid points and N+1 equally spaced grid points {t0, t1, . . . , tN}of time. The
stock price is assumed to be log-normally distributed and thus can be at a minimum of zero and
a maximum of infinity. Since lim

S→0
lnS = −∞, we must choose a small ε such that lnS = ε for

S < 1, to avoid negative stock prices.
2.2. Boundary and initial conditions. We define the boundary conditions for our trans-

formed PDE in (9). If the asset price is zero, the put is worth its strike price K regardless of
the time to expiration

(10) f (t, 0) = fn,0 = K for all t, n

For the change of variable technique, we have lnS = ε with ε very close to zero. This condition
can be specified as

(11) g (t, ε) = g (t, lnS) = 0 for S < 1

As the price of the underlying asset price, the value of the put option approaches zero

(12) fn,M = 0 for n = 0, N

For the change of variable technique, when S →∞, then the put option is zero as lnS →∞

(13) g (t, y) = g (t, lnS) = gn,M = 0 for n = 0, N

When S →∞, the first derivative of the call price with respect to the asset price is 1.

(14) lim
S→∞

∂f

∂S
= 1 for all t

28

JOURNAL OF SCIENCE AND ARTS

This shows that for sufficiently high values of the underlying asset, the option behaves like
the underlying asset. Since ∂f(t,S)

∂S =
(

∂g(t,S)
∂y

)
e−y, we have

(15)
∂f (t, S)

∂y
= ey = S for all t when lnS →∞

The intrinsic value at expiration wich gives the initial condition is given as

(16) f (T, S) = max (K − ST , 0) for all S

In terms of y, for the change of variable technique gives

(17) g (T, y) = max (K − ey, 0) for all y

This last equation representing the initial condition helps us to fill the entire rightmost column
with the stock prices at time T .

3. Monte Carlo and parallel computing

Monte Carlo method is an analitycal technique for solving a problem by performing a large
number of trial runs, called simulations, and inferring a solution from colective results of trial
runs. Monte Carlo algorithms often migrate easily onto parallel systems. Many parallel Monte
Carlo programs have a negligible amount of interprocessor communications. When this is case,
p processors can be used either to find an estimate about p times faster or to reduce the error
of the estimate by a factor of

√
p. Another way of expressing the second point is to say that p

processes can reduce the variance of the answer by a factor of p. A principal challenge in the
development of good parallel random number generators.

A Monte Carlo simulation can be used as a procedure for sampling random outcomes of a
process followed by the stock price([8])

(18) dS = µSdt + σSdWt

where dWt is a Wiener process and S is the stock price. If ∆Sis the increase in the stock price
in the next small interval of time ∆t then

(19)
∆S

S
= µ∆t + σZ

√
∆t

where Z ∼ N (0, 1), σ is the volatility of the stock price and µ is its expected return in a
risk-neutral world. The method can also be applied when the value of the financial derivative
depends only on the final value of the underlying asset. An example is the European style option
whose payoff depends on the value of S at maturity time T ([8]). The stock price process for a
European option can be expressed as

(20) Si
T = S exp

[(
µ− σ2/2

)
T + σz

√
T

]
where i = 1,M and M denotes the number of trials or the different states of the world. These M
simulation are the posible paths that a stock price can have at maturity date T . The estimated
European call option values is

(21) c =
1
M

M∑
i=1

e−rT max
[
Si

T −K, 0
]

In master-worker paradigm (Figure 1 b) we generate random numbers on the 0 node and to
move on the worker nodes. These worker node compute Monte Carlo partial-sum and move
these partial-sum a 0 node what compute finale-sum. MPI Reduce() function can be use for
quicken the calcul of finale-sum.

Figure 1. Model master worker for parallel Monte Carlo method

29

JOURNAL OF SCIENCE AND ARTS

In order what increase of number of simulation the graphic is stabilized towards accurate value
of option. For S0= 100.00, K= 95.00, σ=0.2 and T= 0.25, we find theoretical value S=8.056
using (6).

Number
simulations

∆t
Nr processors

∆t
Nr processors

1 2 3 1 2 3

101

10−2

-2.970 -2.168 +0.006

10−3

-3.700 +1.312 -2.322
102 -0.830 -0.200 +0.557 -0.889 -0.273 -0.306
103 -0.021 -0.120 -0.195 +0.041 +0.113 -0.060
104 +0.044 +0.051 +0.045 +0.059 -0.037 +0.043
105 -0.014 -0.031 -0.014 +0.008 +0.026 +0.007
106 +0.003 +0.005 +0.007 +0.005 +0.005 -0.000

Table 1. Error of parallel Monte Carlo method for ∆t=10−2 and 10−3

The efficiency and percentage from calculation total time need for finding option value and
for random numbers generation are given in Table 2.

Total time % gen random
numbers time

% computing
time

% comunication
time

efficiency

14 63% 36% 1% 99%

Table 2. The computing time and efficiency for 104 simulating and ∆t=10−2

4. Models by using finite difference methods

The finite difference method consists of discretizing the partial differential pricing equation
and the boundary conditions using a forward or a backward difference approximation.

We discretize the equation with respect to time and to the underlying asset price. Divide the
(S, t) plane into a sufficiently dense grid or mesh, and approximate the infinitesimal steps ∆S
and ∆t by some small fixed finite steps. Further, define an array of N+ 1 equally spaced grid
points t0, t1, . . . , tN to discretize the time derivative with ∆tn+1 − tn = ∆t and ∆t = T/N .

We know that the stock price cannot go below 0 and we have assumed that Smax = 2S0. We
have M+ 1 equally spaced grid points S0, S1, . . . , SM to discretize the stock price derivative

with Sm+1 − Sm = ∆S and ∆S = Smax/M .
This gives us a rectangular region on the (S, t) plane with sides (0, Smax) and (0, T). The

grid coordinates (n, m) enables us to compute the solution at discrete points.
The time and stock price points define a grid consisting of a total of (M + 1)×(N + 1) points.

The (n, m) point on the grid is the point that corresponds to time n∆t for n = 0, N , and stock
price m∆S for m = 0,M . We will denote the value of derivative at time step tn when the
underlying asset has value Sm as

(22) fn,m = f (n∆t, m∆S) = f (tn, Sm) = f (t, S)

30

JOURNAL OF SCIENCE AND ARTS

where n and m are the number of discrete increments in the time to maturity and stock price
respectively. The discrete increments in the time to maturity and the stock price are given by
∆t and ∆S, respectively.

Let fn = fn,0, fn1, . . . , fn,M for n = 0, N . Then, the quantities f0,m and fN,m for m = 0,M
are referred to as the boundary values which may or may not be known ahead of time but in
our PDE they are known. The quantities fn,m for n = 1, (N − 1) and m = 0,M are referred to
as interior points or values.

4.1 The Implicit finite difference method. We express fn+1,mimplicitly in-terms of
the unknowns fn,m−1, fn,m and fn,m+1. We discretize the Black Scholes PDE in (1) using the
forward difference for time and central difference for stock price to have:

(23)
fn+1,m − fn,m

∆t
+ rm∆S

[
fn,m+1 − fn,m−1

∆S

]
+

+
1
2
σ2m2∆S2

[
fn,m+1 − 2fn,m + fn,m−1

∆S2

]
= rfn+1,m

Rearranging, we get

(24) fn+1,m =
1

1− r∆t
[α1mfn,m−1 + α2mfn,m + α3mfn,m+1]

forn = 0, N − 1 and m = 1,M − 1. The implicit method is accurate to O
(
∆t, ∆S2

)
, the

parameters α′kms for k= 1,2,3 are given as:

(25) α1m =
1
2
rm∆t− 1

2
σ2m2∆t, α2m = 1 + σ2m2∆t, α3m = −1

2
rm∆t− 1

2
σ2m2∆t

The system of equations can be expressed as a tridiagonal system([1])

(26)


fn+1,0

fn+1,1
...
fn+1,M−1

fn+1,M

 =


α20 α30 0 · · · 0 0 0
α11 α21 α31 · · · 0 0 0
...

...
...

. . .
...

...
...

0 0 0 · · · α1M−1 α2M−1 α3M−1

0 0 0 · · · 0 α1M α2M




fn,0

fn,1
...
fn,M−1

fn,M


which can be written as:

(27) Afn,m = fn+1,m for m = 0,M

Let fn = fn,m and fn+1 = fn+1,m, then we need to solve for fn given matrix A and column
vector fn+1 and this implies that

(28) fn = A−1fn+1

We can deduce:fn−1 = A−1fn =
(
A−1

)2
fn+1, . . . , f0 =

(
A−1

)n+1
fn+1.

The matrix A has α2m = 1 + σ2m2∆t > 0,m = 0,M ,
M∏

m=0
α2m 6= 0, and therefore the matrix

is nonsingular. We can solve the system by finding the inverse matrix A−1.
When we apply the boundary conditions together with (24), this gives rise to some changes

in the elements of matrix A with

(29)
{

α20, α2M = 1
α30, α1M = 0

Our initial condition give values for Nth time step, and we solve for fn at in terms of at tn+1.
We set the right hand side of the system to our initial condition and solve the system to produce

31

JOURNAL OF SCIENCE AND ARTS

a solution to the equation for time step N -1. By repeatedly iterating in such a manner, we can
obtain the value of f at any time step 0, 1, . . . , N − 1.

Figure 2. Trinomial tree of implicit finite difference discretization
4.2. The stability of implicit method. The eigenvalues λn are given by

(30) λn = α2m + 2 [α1mα3m]1/2 cos
nπ

N
for n = 1, 2, . . ., N − 1

Substituting the values α1m, α2m, α3m with values from (27), we have

(31) λn = 1 + σ2m2∆t + σ2m2∆t

[
1− r2

σ4m2

]1/2 [
1− 2 sin2

nπ

2N

]
for n = 1, (N − 1)

Furthemore, applying the binomial expansion on the square root part and re-arranging we
have

λn ≈ 1 + 2σ2m2∆t− 2σ2m2∆t sin2 nπ

2N
where there is change of sign due to the truncation of the binomial expansion. Therefore the
equation are stable when

‖A‖2 = max
∣∣∣1 + 2σ2m2∆t− 2σ2m2∆t sin2 nπ

2N

∣∣∣ ≤ 1

that is,

(32) −1 ≤ 1 + 2σ2m2∆t− 2σ2m2∆t sin2 nπ

2N
≤ 1 for n = 1, (N − 1)

As ∆t → 0, N →∞and sin2 (N−1)π
2N → 1, (32) reduces to | 1 | ≤ 1

Alternatively,
1 + σ2m2∆t ≥ 0 i ‖A‖∞ = 1
Therefore by Lax’s equivalence theorem, the scheme is unconditionaly stable, convergent

and consistent.
4.3. The results concerning convergence speed of implicit method. For a European

put option when: S= 20, K= 22, r= 0.1, T= 0.5 i σ = 0.25, the results content in table Table
3 shows that when N and M are different, the finite difference methods converges faster than
N and M are the same.

32

JOURNAL OF SCIENCE AND ARTS

Implicit Implicit function[P]=impl method(S,K,r,sigma,T,N,M);1
N=M Method N M Method dt=T/N;ds=2*S/M;A=sparse(M+1,M+1); 2

f=max(K-(0:M)*ds,0);//cond finale 3
10 2,0574 10 20 2,1326 for m=1:M-1 4
20 2,1546 20 40 2,2091 x=1/(1-r*dt); 5
30 2.2204 30 60 2,2234 A(m+1,m)=x*(r*m*dt-

sigma*sigma*m*m*dt)/2;
6

40 2,2177 40 80 2,2287 A(m+1,m+1)=x*(1+sigma*sigma*m*m*dt); 7
50 2,2286 50 100 2,2328 A(m+1,m+2)=x*(-r*m*dt-

sigma*sigma*m*m*dt)/2;
8

60 2,2317 60 120 2,2352 end 9
70 2,2342 70 140 2,2366 A(1,1)=1;A(M+1,M+1)=1; 10
80 2,2352 80 160 2,2377 for i=N:-1:1 11
90 2,2379 90 180 2,2387 f=A\f’;f=max(f,(K-(0:M)*ds)’); 12
100 2,2374 100 200 2,2393 end 13

P=f(round((M+1)/2)); 14

Table 3. The comparison of the convergence of implicit method for increase N and M

The 11-13th lines of program from Table 3 are large consumption of computation time. In
practice, there are far more efficient solution techniques than matrix inversion, due to the propri-
ety of A being tridiagonal. Then, methods like LU decomposition or SOR are applied directly
to (10), and the execution time is O(N) per solution. In order to compute A−1, one needs (N2)
operation and others O(M2) to find (A−1)m, using one processor, so in a serial manner. But
with several processors under a convenient network, we show in what follows that we can obtain
a time of execution O(N), to compute the inverse A−1.

5. Parallel algorithm for calculating the numerical solution

5. 1 Gauss Jordan method for solving a inverse of matrix. If N = M then A is
a N × N -square matrix again fn and fn+1 are N -dimensional vectors. We use the method of
elementary transformation to compute the inverse matrix, A−1 ([6]). In few words, we start
from the matrix A1, which is obtained from A and a unit matrix, written on the right side of
A, as follows:

A 0 =


a11 a12 · · · a1n 1 0 · · · 0
a21 a22 · · · a2N 0 1 · · · 0
· ·
aN1 aN2 · · · aNN 0 0 · · · 1


Note. For the sake of the clearness, we denote by aij , i, j = 1, N all the elements of matrix A,
it means α1m, α2m, α3mand 0. Further, making elementary transformation only on the lines of
A0, after several steps, we bring it to the form AN , where

A N =


1 0 . . . 0 a1,N+1 a1,N+2 · · · a1,2N

0 1 . . . 0 a2,N+1 a2,N+2 · · · a2,2N

· ·
0 0 · · · 1 aN,N+1 aN,N+2 · · · aN,2N



The part


a1,N+1 a1,N+2 · · · a1,2N

a2,N+1 a2,N+2 · · · a2,2N

· · · · · · · · · · · ·
aN,N+1 aN,N+2 · · · aN,2N

 represents A−1.

The computation is made in the following manner:

33

JOURNAL OF SCIENCE AND ARTS

Step 1.

A 1 =


1 a1

12 · · · a1
1N a1

1,N+1 a1
1,N+2 · · · a1

1,2N

0 a1
22 · · · a1

2N a1
2,N+1 a1

2,N+2 · · · a1
2,2∗N

· ·
0 a1

N2 . . . a1
NN a1

N,N+1 a1
N,N+2 . . . a1

N,2N


where a1

1j = a1j/a11, j = 1, 2N

a1
ij = aij − a1

1jai1, i = 2, N, j = 1, 2N

Step 2.

A2 =


1 0 a2

13 · · · a2
1N a2

1,N+1 a2
1,N+2 · · · a2

1,2N

0 1 a2
23 · · · a2

2N a2
2,N+1 a2

2,N+2 · · · a2
2,2N

· ·
0 0 a2

N3 . . . a2
NN a2

N,N+1 a2
N,N+2 · · · a2

N,2N


where a2

2j = a1
2j/a1

22, j = 1, 2N

a2
ij = a1

ij − a2
2ja

1
i2, i = 1, N, i 6= 2, j = 1, 2N

and so on, till the matrix has the final form
1 0 · · · 0 aN

1,N+1 aN
1,N+2 · · · aN

1,2N

0 1 · · · 0 aN
2,N+1 aN

2,N+2 · · · aN
2,2N

· ·
0 0 · · · 1 aN

N,N+1 aN
N,N+2 · · · aN

N,2N


and A−1 is read from the second part of this matrix:

A−1 =

 aN
1,N+1 aN

1,N+2 · · · aN
1,2N

· · · · · · · · · · · ·
aN

N,N+1 aN
N,N+2 · · · aN

N,2N


5.2.Analysis of sequential algorithm. From (28) and previous section need first decrease

the computing time of matrix A. The number of operations, nGJ , through Gauss Jordan method
is computing remarking a each step s, we calculating N -1 multiplicators. Then([6])

nGJ =
n∑

s=1

[(N − 1) + (N − 1) (N + 1− s)] =
N3

2
+ N2 − 3N

2
≈ N3

2
+ N2

Here an example of execution for M = N= 4:
It is clear that, using only one processor to make all computations, the time of execution is

O
(
N3

)
, because we have N steps and every step needs O

(
N2

)
operations to be computed. In

order to reduce the execution time, we can use the parallel calculus.

Figure 3. The lattice network

34

JOURNAL OF SCIENCE AND ARTS

function x=
gaussjordan(S,K,r,sigma,T,N,M)
dt=T/N; ds=2*S/M; A=sparse(M+1,M+1);
%cond pe frontiera
A(1,1)=1;A(M+1,M+1)=1;
A(1,2)=0;A(M+1,M)=0;
%formare matrice tridiagonala
for m=1:M-1

A(m+1,m)=0.5*r*m*dt-0.5*
sigma*sigma*m*m*dt;

A(m+1,m+1)=(1+sigma*sigma*m*m*dt);
A(m+1,m+2)=-0.5*r*m*dt-

0.5*sigma*sigma*m*m*dt;
end
B=[A eye(size(A))]; % matricea [A I]
C=B;%aloritmul Gauss Jordan
for j=1:2*(M+1)

D(1,j)=C(1,j)/C(1,1);
end

for i=2:M+1
for j=1:2*(M+1)

D(i,j)=C(i,j)- D(1,j)*C(i,1);
end

end
C=D;
for pas=2:M+1

for j=1:2*(M+1)
D(pas,j)=C(pas,j)/C(pas,pas);

end
for i=1:M+1

for j=1:2*(M+1)
if i∼=pas
D(i,j)=C(i,j)-D(pas,j)*C(i,pas);

end
end

end
C=D;
end

The initial matrix

1.0000 0 0 0 0 1.0000 0 0 0 0

0.0009 1.0025 -0.0034 0 0 1.0000 0 0 0

0 -0.006 1.0100 -0.0094 0 0 0 1.0000 0 0

0 0 -0.0047 1.0225 -0.0178 0 0 0 1.0000 0

0 0 0 0 1.0000 0 0 0 0 1.0000

The Gauss Jordan final matrix is identical with Matlab call: inv(A)

1.0000 0 0 0 0 1.0000 0 0 0 0

0 1.0000 0 0 0 -0.0009 0.9975 0.0034 0.0000 0.0000

0 0 1.0000 0 -0.0000 0.0006 0.9901 0.0091 0.0002

0 0 0 1.0000 0 -0.0000 0.0000 0.0045 0.9780 0.0174

0 0 0 0 1.0000 0 0 0 0 0

Having in mind the previous method, we come back to the solving of system (1), using more
than one processor. This can be with N × 2N processors connected under a lattice network,
like in Figure 3. In every node of the network there is a processor. According with [1], under
this connectivity, every processor Pij is connected and may transfer information with its four
neighbourhood Pi−1,j , Pi+1,j , Pi,j−1, Pi,j+1, i, j = 1, N − 1. The computation of the inverse
matrix A−1 can be made in the following manner:

Step 0. (Initialization)

Pij ← A0, i = 1, N, j = 1, 2N(each processor save A0 matrix)
Step 1. In parallel do:
P1j ← a1

1j = a1j/a11, j = 1, 2N

Pij ← a1
ij = aij − a1

1jai1, i = 2, N, j = 1, 2N

Step 2, N
for p = 2 to N do
In parallel do:
P2j ← ap

2j = ap−1
2j /ap−1

22 , j = 1, 2N

Pij ← ap
ij = ap−1

ij − ap
2ja

p−1
i2 , i = 1, N, j = 1, 2N, i 6= 2

and so on, till step N , when the matrix in final form is obtained and the inverse matrix A−1

can be read. The effort of computation is of order O (N), because we still have N steps, but in
parallel, every step takes the time for doing a division, a multiplication and a substraction.

35

JOURNAL OF SCIENCE AND ARTS

Note. Due to the fact that at step i, the line of processor Pij , j = 1, 2N executes a division
and all the other processors executes a subtraction and a multiplication, the problem of their
synchronization has be taken into account.

5.3. Solving the final system in parallel. In the previous paragraph we show how the
inverse matrix A−1 can be computed in parallel, with an execution time of order O (N). In
order to solve the system (11), which gives the final numerical solution for the Black-Scholes
equation, we have to compute the power m of matrix A−1. According with [2] and [4] , this can
be done in a logarithmic time, O (log2 N) using a binary/tree connectivity among processors,
like in Figure 4.

Figure 4. The binary-tree network
Note. In every node of this network there is a processor. The idea of computation is the

following:
Step 1. (Initialization)
Every processor leaf (at level (N -1)) memorizes the matrix A−1.
Step 2. Every processor at level (N -2) computes

(
A−1

)2 = A−1 ·A−1.
Step 3. Every processor at level (N -3) computes

(
A−1

)4 =
(
A−1

)2 ·
(
A−1

)2 and so on.
After log2 N steps, the final results

(
A−1

)N will be computed by the processor root.
6. Conclusion
We presented an algorithm which generates the numerical solution of the Black-Scholes equa-

tion for European option in an execution time of order O (N · log2 N), using parallel calculus.
The binary-tree network can be included in the lattice network, in order to use the same proces-
sors.

References

[1] Gerbessiotis Alexandros V., Trinomial-tree parallel option price valuation, New Jersey Institute of Technology,
Newark, NJ 07102, USA, June 25, 2002

[2] White, R.F. Computational Modeling with Methods and Analysis, Department of Mathematics North Carolina
State University, CRC Press , 2003 (format electronic)

[3] Duffy, Daniel J.,Finance Difference Methods in Financial Engineering, A Partial Differential Equation Ap-
proach, John Wiley and Sons, Chichester, UK, 2004 (format electronic)

[4] Kazuhiro Iwa awa, (Analitic Formula for the European Normal Black Scholes Formula), New York University,
Department of Matematics, December, 2, 2001

[5] M.B. Voc, I.Boztosun, D.Boztosun, On the Numerical Solution of Black-Scholes Equation, proc. Of Int. Work-
shop on Mesh Free Methods, 2003

[6] Brebente Corneliu, Mitran Sorin, Zancu Silviu, Metode numerice, Editura Tehnic, Bucureşti, 1997,(versiune
electronic)

[7] Moisa, Altăr, Inginerie financiară, (2007, Note de curs format electronic, ASE Bucureşti)
[8] Bouchard Bruno, Méthodes de Monte Carlo en Finance, Notes de cours, Université Paris VI LPMA, et CREST,

Mai, 2006

Department of Mathematics, Valahia University of Târgovişte,
Bd. Unirii 18-24, Târgovişte, Romania
E-mail address: dfanache@gmail.com

36

