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ON THE EQUILIBRIUM OF AN ELASTO-PLASTIC BODY SUBMITTED
TO THE DEFORMATION BY TRACTION

CONSTANTIN GHIŢĂ

Abstract. We formulate some problems modelling the local behaviour of a plastic material
with hardening. We express the directional linear hardening in term of a hidden internal variable.
In this context there exist an admissible loading intensity and a permissible displacement for a
large deformation.

Introduction. We focus our attention on an elastic-plastic body submitted to the deforma-
tion by traction. Suppose that the material is governed by a nonlinear subdifferential consti-
tutive law. We express the directional linear hardening in term of a hidden internal variable:
the dimensionless plastic work. We formulate an equilibrium problem under restrictions on the
hardening factor, on Lagrange multiplier of the constitutive law and in case that an intuitively
condition on the direction of the forces is satisfied. We can derive a loading intensity and an
admissible displacement in context of large deformation.

1. Some preliminaries considerations. We have considered a nonlinear elastic-plastic
body, that occupies a region Ω in R3, its boundary consisting in disjoint parts Γu,Γt,Γc, on Γu

the displacement is given, on Γt the surface tractions are given, on Γc the unilateral conditions
with Coulomb’s friction are given. Many useful comments about subject can be find in [3], [5],
[6]. The body is subjected to body forces f0 over Ω and surface tractionγ~τ , for some traction
vector with prescribed direction. Here and in the sequel u = (u1, u2, u3) is the displacement
vector field, the superposed dot denotes time derivative, σ = {σij}i,j=1,2,3is the stress tensor
field, n̄ is the outward unit normal vector field on the surface Γ of the domain Ω, θ is a scalar
time dependent function.

We will investigate the problem:
Problem 1.1 (quasi-static case [7]): Find (u, σ, θ∗) in admissible vector valued spaces, such

that
ε̇ (x, t) = Aτ (u (x, t)) u̇ (x, t) , for all (x, t) ∈ Ω× [0, T ], u (x, 0) = u̇ (x, 0) = 0, for all (x, t) ∈

Γu × [0, T ] (geometric equation);
A∗τ (u (x, t))σ (x, t) = f0 (x, t) , for all (x, t) ∈ Ω× [0, T ] and
A∗τ (u (x, t))σ (x, t) .n̄ (x, t) = γ (x, t) ϑ̄, for all (x, t) ∈ Γt × [0, T ] (equilibrium equation);
−R (x, t) ∈ ∂Φ (u̇ (x, t)) , for all (x, t) ∈ Γs × [0, T ],
R (t, x) = A∗τ (u (x, t))σ (x, t) .n̄ (x, t), for all (x, t) ∈ Γs × [0, T ] (unilateral contact friction

with Coulomb’s law);(
ε̇ (x, t) ,−θ̇ (t)

)
∈ ∂Ψc (σ (x, .t) , θ∗ (t)) , with, for all (x, t) ∈ Ω× [0, T ].

The dynamical case was intensively studied in [3], [4], [8], using technical approach by penalty
method. Here we reconsider the dynamical problem in the context of nonlinear geometric strain-
displacement relation and develop some considerations about existence and regularity solution.
In [1] apart from the mechanical reasons over shrink fitted shaft, or bushing assemblage of
brakes was formulated a frictional joint model of an elastic body and an static deformation
are studied. In the sequel the boundary part Γc is the contact boundary where the body may
came into contact with a rigid support. Any displacement and traction forces on Γc can be
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decomposed into normal and tangential components: uN = uini (summation convention is
used), σN = σijninj , uTi = ui − uNni, i = 1, 2, 3, σTi = ui − uNni, i = 1, 2, 3.

We also introduce
Problem 1.2 (dynamical nonlinear case): Find (u, σ, θ∗) in admissible vector valued spaces,

such that
ü (x, t) − A∗τ (u (x, t))σ (t, x) = f0 (x, t) , for all (x, t) ∈ Q+ = Ω × I (dynamical equilibrium

equation);(
ε̇ (x, t) ,−θ̇ (t)

)
∈ ∂Ψc (σ (x, .t) , θ∗ (t)) , with , (nonlinear constitutive law) for all (x, t) ∈

Ω× [0, T ], particularly
σ (x, t) = A1ε (u (x, t)) +A2ε̇ (u (x, t)) (nonlinear visco-elastic law),
u̇ (x, t) = v (x, t) , for all (x, t) ∈ S+

u = Γu × I (prescribed velocity);
A∗τσ (x, t) = f1 (x, t) , for all (x, t) ∈ S+

t = Γt × I (the traction forces);
u̇N (x, t) ≤ 0, A∗τσ (x, t) ≤ 0, u̇N (x, t)A∗τσ (x, t) = 0, for all (x, t) ∈ S+

c = Γc × I (unilat-
eral contact);

u̇T (x, t) = 0 ⇒ |σT (x, t)| ≤ ν |σN (x, t)| ,

for u̇T (x, t) 6= 0, σT (x, t) = −ν |σN | u̇T
|u̇T | , for all (x, t) ∈ S+

c (Coulomb’s friction condition);
u (x, 0) = u̇ (x, 0) = 0 (initial data).
2. Nonlinear geometric mapping and dual spaces for an elasto-plastic model. Let

Ω be an open, bounded, connected subset of R3 with a boundary Γ, a Lipschitz boundary is
sufficient.

Consider U =
{
u : Ω× I → R3

}
the space of admissible displacements, U̇the space of admis-

sible velocities, paired with F the space of admissible forces acting on the body by the bilinear
form (u̇, ρf)e, the density of external power. Let E be the strain Green space, Σ the dual space
of E, that is the Kirchhoff stress space; for a large deformations we take Ė the admissible strain
rate space, the dual pair of Ψc (τ, φ∗) ≥ 〈AT (u) u̇, τ − σ〉 +

〈
−θ̇, φ∗ − θ∗

〉
I

and σ ∈ Σ is given

by (ε̇, σ)i = ε̇ : σ = Tr
(
ε̇.σT

)
= ε̇ijσij , the density of internal power.

Let ε : U → E be the Green - Saint - Venant mapping, giving the strain tensor,
ε (v) = 1

2

(
∇v +∇vT +∇v.∇vT

)
, for all v ∈ U , where the nabla operator ∇ is defined from

U to E. Note that dε
dv (u) is the directional derivative of ε at u ∈ U in the direction v, the so

called tangent geometric mapping. We denote AT (u) v = dε
dv (u). It is a simple calculus to show

Lemma 2.1: The tangent geometric mapping is expressed by the relation

dε

dν
(u) =

1
2

[
∇ν +∇νT +∇ν∇uT +∇u∇νT

]
.

We omit the demonstration, more precise the map AT (t, u) is exactly the material derivative of
ε (u), that is we have

Lemma 2.2: There exist AT (t, u) u̇ =
[(
I +∇uT

)
∇

]
sym

u̇

By this result it mean that AT (t, u) is an affine map; we observe that its second derivative
does not depend on u, in other wordsδ2AT (t, u) = 0.

In this way we emphasize the nonlinear mapAT (u) : U̇ → Ė,

AT (t, u) v̇ =
1
2

[
∇v̇ +∇v̇T +∇u∇v̇T +∇uT∇v̇

]
,

Let A∗T (u) be the conjugate map of AT (u), defined by a Gaussian transformation
〈AT (u) u̇, σ〉Ω = (u̇, A∗T (u)σ)Ω̄ , where 〈., .〉Ω =

∫
Ω

(., .)i dx and (., .)Ω̄ =
∫
Ω

(., .)e dx+
∫
Γ

(., .)e da.
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In order to understand the Gaussian transformation we write, taking into account the sym-
metric stress tensorσ,

1
2

∫
Ω

{
∇u̇+∇u̇T +∇u∇u̇T +∇u̇∇uT

}
: σdx =

=
∫
Γ

(
I +∇uT

)
σn̄da−

∫
Ω

(
I +∇uT

)
∇σ.u̇dx,

and identifying the terms we obtain

A∗T (t, u) : Σ → F,A∗T (t, u)σ = −
(
I +∇uT

)
∇σ, in Ω,

A∗T (t, u)σn̄ = −
(
I +∇uT

)
∇σ.n̄, on Γ,where ~n is the outward normal on Γ.

Remark 2.1: The expression
(
I +∇uT

)
∇σ is understood in the sense of trace space.

Under the additional conditions about the boundary, that is ∂Ω ∈ C∞, denote Γfc = Γf ∪ Γc

an open subset of ∂Ω, ∂Γfc ∈ C∞, the space of traces on Γfc of the displacements u ∈V
=

{
v ∈ H1 (Ω) /v = 0onΓu

}
is the space H1/2

00 (Γfc), see [12], defined by

(2.1) H
1/2
00 (Γfc) =

{
w ∈ H1/2 (Γfc) /

1
√
ρ
w ∈ L2 (Γfc)

}
,

where ρ (x) = d (x, ∂Γfc). Hence, the trace operator γ : V → H
1/2
00 (Γfc) is linear, surjective and

continuous when H1/2
00 (Γfc) is equipped with its natural norm.

Take X = V 3 the space of vector valued functions, then the trace operator γ : X →
H

1/2
00

(
Γfc, R

3
)

=
(
H

1/2
00 (Γfc)

)3
is a linear, surjectiv and continuous, hence H1/2

00

(
Γfc, R

3
)

is

isomorphic to the quotient spaceX/H1
0 (Ω,R3). Denote also X̃ =

{
v ∈ X/ (A∗Tσ) v ∈ L2

(
Ω, R3

)}
,

for u ∈ X̃ define the continuous linear form, given by lu (v) = a (u, v) +
∫
Ω (A∗Tσ (u)) vdx, where

the bilinear form a is defined by a (u, v) =
∫
Ω ε (u) : σ (v) dx. The functional lu depends only

upon the restriction v/Γfc
, hence can be identified with an element of

(
H

1/2
00

(
Γfc, R

3
))∗

, denoted
A∗Tσ (u) .n̄ and given by the Green’s formula:

(2.2) 〈A∗Tσ (u) .n̄, w〉 = a (u, v) +
∫
ΩA

∗
Tσ (u) vdx, for allw ∈ H1/2

00

(
Γfc, R

3
)
,

where v ∈ X is any element such that v/Γfc
= w.

The last relation reveals that the mapping u ∈ X̃ → A∗Tσ (u) .n̄ ∈
(
H

1/2
00

(
Γfc, R

3
))∗

is linear

and continuous map. Since n ∈ C∞
(
∂Ω, R3

)
, ∂Ω ∈ C∞ and A∗Tσ (u) .n̄ is a distribution on Γfc,

then σN (u) = (A∗Tσ (u) .n̄) .n̄ is well defined on Γfc, for all u ∈ X̃, and σN (u) ∈
(
H

1/2
00 (Γfc)

)∗
.

Of course, u ∈ X̃ → σN (u) ∈
(
H

1/2
00 (Γfc)

)∗
is linear and continuous, as is the map u ∈ X̃ →

σT (u) = A∗Tσ (u) .n̄− σN (u) .n̄ ∈ H1/2
00

(
Γfc, R

3
)
.

3. Unilateral contact conditions with friction. The contact of a body with a rigid
support satisfies the classical law of Signorini type: σN ≤ 0, uN −g ≤ 0, σN (uN − g) = 0 on Γc,
where g is a positive number, measuring the initial gap between the body and the rigid support;
there is no sign restriction for g.

In a more general setting, let K ⊂ U be a subset of the admissible displacements of every
boundary point of Γc, assume that there exists a real function g : U → R, such that any
satisfies g (u (x, t)) ≤ 0, for all time of loading t ∈ I and x ∈ Γc. For any admissible u we associate
the subset VK (u) ⊂ U̇ of admissible velocities defined by v ∈ VK (u) ⇔ g (u) + α∇g (u) v ∈
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R− = (−∞, 0], for some α ∈ R+, see [2]. A generalized Signorini -Fichera conditions on Γc,
expressing the contact with unilateral support, having a nonlinear intensity gis

(3.1) g (u) ≤ 0, RN (u) ≤ 0, g (u)RN (u) = 0, on Γc,
where RN (u) =

(
I +∇uT

)
∇σ.n̄ is a traction vector on the part Γt of boundary Γ, as a

reaction of the rigid obstacle.
The friction law is that of Coulomb, which can be written as |σT | ≤ ν |σN |, on Γc, that is, if

|σT | < ν |σN |, then u̇T = 0 and if |σT | ≡ ν |σN | > 0, then u̇T = −λσT , λ ≥ 0, here ν is a positive
function, named the friction coefficient.

Example 3.1: Let g (u) = uN − g be an affine intensity function, where uN = uini, n̄ is the
outward normal to σN (u) = σN (ū), then the condition (3.1) reduces to the classical one. For
such a body, our goal is to define the cone of limit velocity fields. A limit state of the mechanical
system is a state in which a constant rigid velocity field can be superposed onto a quasi-static
deformation. Let Q = {w/wi = αi + βijxj , βij = −βji} be the set of rigid body velocities, αi

and βijare real constants. Suppose that a kinematic contact uN − g ≤ 0 must be satisfied both
at the instance when the limit velocity added to the quasi-static deformation and when a such
a motion has continued for some short time. For a given displacement u we therefore define the
cone of limit velocities as

K∞ (u) = {w ∈ Q/uN + ηwN ≤ g, uN ≤ g, on Γc, (∀) η > 0, w 6= 0} =

= {w ∈ Q/wN ≤ 0 on Γc, w 6= 0} .
Each w ∈ K∞ (u) divides Γc into two complementary parts Γ−c (w) = {x ∈ Γc/wN (x) < 0} and
Γ0

c (w) = {x ∈ Γc/wN (x) = 0}
Consider a velocity w ∈ K∞ (u), that is added to a quasi-static deformation at initial time,

t = 0, then for t > 0 and x ∈ Γ−c (w (x) < 0) we see from the contact law relation that
σN (x) = 0 and from Coulomb friction condition we have σT (x) = 0. Thus, the quasi-static
deformation of the body at the limit state generated by w suppose the contact and friction
conditions only on Γ0

c (w). Suppose w = γt̄, where t̄ is a preserved direction, along which act the
traction forces, Γ0

c (w) is an open set and each of its connected parts will be part of cylindrical
or plane surfaces parallel with the t̄- direction.

Note that for a chosen w the problem can be interpreted, at least for a flat Γ0
c (w), as a steady

sliding problem. This is a case when no rotations are involved, i. e. βij = 0. If βij 6= 0, this
interpretation is not possible due to the incapability to model large rotations.

Substituting the displacement u = u0 + γt̄in the constitutive law, for example for a nonlinear
elastic body, we obtain σij = Eijkl

∂u0
k

∂xl
in f1 ∈. From the contact conditions we get σN ≤ 0,

u0
N − g ≤ 0, σN

(
u0

N − g
)

= 0 on Γ0
c (w) and the friction law implies σT = −ν |σN | t̄ on Γ0

c (w).
The problem of finding the fields σ and u0, such that
(3.2) A∗T (u)σ = ρf0, σij = Eijkl

∂u0
k

∂xl
in f1 ∈, A∗τσ (u)σ.n̄ = f1 (x) on Γt, σN ≤ 0, u0

N − g ≤ 0,
σN

(
u0

N − g
)

= 0 on Γ0
c (w), σT = −ν |σN | t̄ on Γ0

c (w), constitutes a limit quasi-static problem.

Now define Φ∗
N : R → R, Φ∗

N (τN ) =
{

0, τN < 0
+∞,o therwise

, take the conjugate function

Φ (g (u)) = sup
τN∈N

{(g (u) , τN )− Φ∗
N (τN )} = sup

τN∈N0

(g (u) , τN ), where N0 is a negative cone

of N = {τN/τN = (τ.n̄) n̄, τ ∈ Σ}, N is the subset of admissible boundary tractions. The con-
tact conditions (3.1) can be summarized in the inclusion form

RN (u) ∈ ∂ΦN (g (u)) = ψN0 (τN ) =
{

0,i fg (u) ≤ 0
+∞,o therwise

,

where ψA is a characteristic function of a real subset A.
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Let ΦT (u̇T ) =
∫
Γ

ν |RN | |u̇T | da be the functional of an external power developed on the

boundary Γ and its conjugate functional

Φ∗
T (τT ) =

{
0, if |τT | ≤ ν |RT |
+∞, otherwise

= ψF1 (τT ), here F1 is a cone in F . The Coulomb’s friction

law is equivalent with −RT ∈ ∂ΦT (u̇).
The behavior of the body on the part Γc of the boundary, having both unilateral contact

conditions and Coulomb’s friction law satisfied, is characterized by the variational inequality:
Problem 3.1: Find u̇ (t) ∈ VK (u (t)), such that
R (u (t)) (v − u̇ (t)) + ν |RN (u (t))| (|vT | − u̇T (t)) ≥ 0, for all v ∈ VK (u (t)), a. e. t ∈ I,

u (0) ∈ K.
Remark 3.2: The last relation is equivalent to inclusion form −R (u (t)) ∈ ∂Φ (u̇ (t)), for all

t ∈ I, where Φ (v (t)) =
∫
Γc

ν (x) |RN ((v (x, t))) |vT (x, t)|| da.

4. Nonlinear constitutive law and the Drucker ’s principle for an elastic-plastic
body. Suppose σc ∈ R+ a material constant, say an yield threshold at an experimental defor-
mation by traction. We have in mind an old model of [7].

Definition 4.1: Denote by θ (t) = 1
µ(Ω̄)σc

∫
t∈I

〈σ,A∗T (u) u̇〉Ω dt a dimensionless plastic power

of the body, occupyingΩ, as an internal variable of a quasi-static state.
We take θ as a hardening factor and let Θ the space of admissible hardening factors of the

body. Let θ∗ be the conjugate function of θ ∈ Θ: θ∗ (s) = sup
t∈I

{ts− θ (t)}. We introduce the

linear hardening property of the material.
Definition 4.2: The body is a material with linear hardening if θ∗ = Hθ, where H is a

positive constant.
Suppose T a convex, lower semicontinuous function of the stress tensor, the plastic yield

function η depending on the hardening factor, as a monotone function and construct ϕ (σ, θ∗) =
T (σ)− η (θ∗)− σc.

Take K = {(σ, θ∗) ∈ Σ×Θ∗/ϕ (σ, θ∗) ≤ 0inΩ}, a closed convex set in Σ×Θ∗.

Example 4.1: Set T (σ) = 〈σ, σ〉 =
3∑

i,j=1
σijσij(= σ2

1 + σ2
2 + σ2

3, after a diagonalization of the

tensor σ), take η = 0 and σc > 0, we obtain the Von Mises condition.
We introduce the indicator function of the set

K, ψK (σ, θ∗) =
{

0, (σ, θ∗) ∈ K
+∞, otherwise

, it is a convex, lower semi-continuous and differentiable

functional, ψK is so called complementary plastic super-potential, denoted Ψc. In this way,
∂Ψc (σ, θ∗) is a convex subset of Ė ×Θ.

Suppose that the two spaces implying the hardening factor are equal, Θ = Θ∗ = L2 (0, T ;R),
with dual pairing 〈ξ, ς〉I =

∫
t∈I

ξ (t) ς (t) dt. Define the duality between Ė × Θ and Σ × Θ∗

given by
〈
(σ, θ∗) ,

(
ε̇,−θ̇

)〉
= (σ,AT (u) u̇)i +

〈
θ∗,−θ̇

〉
I
, which suggests, in a great general-

ity, a constitutive relation of the hardening elastic-plastic material. Consider ψ∗K the support

function of the convex subset K, ψ∗K
(
ε̇,−θ̇

)
= sup

(σ,θ∗)∈Σ×Θ∗

{
〈σ, θ∗〉 ,

(
ε̇,−θ̇

)
− ψK (σ, θ∗)

}
=

sup
(σ,θ∗)∈Σ×Θ∗

{
〈σ,AT (u) u̇〉+

〈
θ̇∗, θ

〉
I
− θ (T ) θ∗ (T )

}
, where

I = [0, T ] , therefore
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(4.1)
(
ε̇,−θ̇

)
∈ ∂Ψc (σ, θ∗) =


(
λ̇∂ϕ

∂σ , λ̇
∂ϕ
∂θ∗

)
,i fϕ (σ, θ∗) < 0

(0, 0) ,ϕ (σ, θ∗) = 0
+∞,ϕ (σ, θ∗) > 0

.

Then, for a given displacement u ∈ U , identifying each member of the dual pair, we obtain
ε̇ = AT (u) u̇ = λ̇ ∂

∂σT (σ), −θ̇ = λ̇η′ (θ∗), iff the constraints ϕ (σ, θ∗) < 0, λ̇ > 0 are satisfied.
Following some considerations of convex analysis, we can write

〈AT (u) u̇, τ − σ〉+
〈
−θ̇ (t) , φ∗ − θ∗

〉
I
≤ Ψc (τ, φ∗)−Ψc (σ, θ∗) , (∀) (τ, φ∗) ∈ Σ×Θ∗.

Having in mind that (σ, θ∗) must be on the yield surface, take ϕ (σ, θ∗) = 0 and the Lagrange
multiplier λ̇ is considered positive, we have a generalized Drucker ’s postulate:

(4.2) Ψc (τ, φ∗) ≥ 〈AT (u) u̇, τ − σ〉+
〈
−θ̇, φ∗ − θ∗

〉
I
, for all (τ, φ∗) ∈ Σ×Θ∗.

The request of satisfying the Drucker ’s postulate can be formulate as a problem on the
constraint K.

Problem 4.1: Find (σ, θ∗) ∈ K such that,
〈AT (u) u̇, τ − σ〉+ 〈θ, φ∗ − θ∗〉I ≤ (φ∗ (T )− θ∗ (T )) θ (T ) , for all (τ, φ∗) ∈ K.
5. Some variational formulation for a limit state and decoupled variational for-

mulation. The domainΩ is a bidimensional subset. Define the bilinear form for an elastic
behaviour of the body, a (u, v) =

∫
Ω

σij : εijdx =
∫
Ω

Eijkl
∂ui
∂xj

∂vk
∂xl

dx, the following Green’s formula

holds for a limit state

a
(
u0, v

)
= −

∫
Ω

∂σij

(
u0

)
∂xj

vdx+
∫
Γ

σijnjvida.

Let V be a space of sufficiently smooth displacements defined on the closure of Ω, a convex set
of admissible displacements is defined as
K ={u ∈ V/uN − g ≤ 0 on Γc}, we have in view the initial gap defined by means of a function

G = (G1, G2) ∈ V , such that g = GN = Gini|Γc
, then we may write K = g + K0, where

K0 = {v ∈ V/vN < 0 on Γc} is a convex cone with vertex in the origin. The complementarity
conditions of contact law can be expressed as a variational inequality for a limit state u0.

Problem 5.1: Find u0 ∈ K,
∫
Γc

σN

(
vN − u0

N

)
da ≥ 0, (∀) v ∈ K.

The variational formulation of the quasi-static problem of Signorini type is the following
Problem 5.2: Find u0 (t) ∈K, such that
a

(
u0, v − u0 (t)

)
−

∫
Γc

νσN

(
u0

) (
vT − u0

T (t)
)
da ≥ 0, for all v ∈K and t ∈ I.

Equivalently, in terms of K, we have
Problem 5.3: Find _

u ∈ K0, such that
(5.1) a

(_
u, v − _

u (t)
)
−

∫
Γc

νσN

(_
u
) (
vT −

_
uT (t)

)
da ≥

≥
(
F.v − _

u (t)
)

+
〈
lg, v −

_
u (t)

〉
−

〈
g, v − _

u (t)
〉
,

where σN

(
u0

)
, σN

(_
u
)
, σN (g) are stress tensors; the two solutions u0 and _

u are related as
u0 = _

u + g, here 〈F, v〉 =
∫
Ω

f0vdx +
∫
Γ

γtivi; 〈lg, v〉 =
∫
Γc

νσN (g) vda and the forces lg may be

interpreted as being due to the shrink-fitting, if g < 0.
We decompose the variational inequality from (5.1) into a variational inequality, related to

the displacement and an equation related to the load multiplier. Assume that L = Q∩ K0 is
a linear subspace of V , then v ∈ L has the property that vN = 0 on Γc, that is K∞ (u) ⊂
L − {0}: L = {v ∈ V/v = kt̄,f orsomek ∈ R} = R.t̄, a one-dimensional subspace of V . We
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set L⊥ =
{
v ∈ V/

∫
Ω

v.t̄dx = 0
}

, so that V = L ⊕ L⊥, where the orthogonality is made

in the L2−sense. Each element u ∈ V may then be decomposed as u = ū + rt̄, with ū =(
u.t̄− 1

µ(Ω)

∫
Ω

ut̄dx

)
t̄+uss̄, where t̄⊥s̄ then ū ∈ L⊥ and r = 1

µ(Ω)

∫
Ω

ut̄dx. We now substitute the

fields u = ū+rt̄, v = v̄+st̄, where ū, v̄ ∈L⊥, into the variational problem. Since a (u, v) = a (ū, v̄),
σN (u) = σN (ū), one then obtains

a (ū, v̄ − ū)−
∫
Γc

νσN (ū) (vT − uT ) da− (s− r)
∫
Γc

νσN (ū) da ≥

≥ (F, v̄ − ū) + (s− r) 〈F, t̄〉+ 〈lg, v̄ − ū〉+ (s− r) (lg, t̄)− a (g, v̄ − ū) .

A solution of the last variational inequality can be constructed from a solution of the following
system:

Problem 5.4: Find ū ∈ K0∩ L⊥, such that −
∫
νσN (ū) (vT − uT )da = (F, t̄)+ 〈lg, t̄〉 and for

all v̄ ∈K ∩ L⊥,

a (ū, v̄ − ū)−
∫
Γc

νσN (ū) (vT − uT ) da ≥ (F, v̄ − ū) + (lg, v̄ − ū)− a (g, v̄ − ū) .

The first equation expresses global equilibrium in the t̄−direction. A certain non-uniqueness of
solutions has appeared. The problem is indifferent with respect to a rigid body displacement in
the t̄−direction.

6. A gap function and its compensatory operator. Let Sa be a time independent
statically admissible set, defined by

Sa = {(v, τ, φ∗) ∈ U × Σ×Θ∗/A∗T (v) τ = f0 in Ω, A∗T (v) τ.n̄ = γ (τ, v) .t̄ on Γt},
where γ (τ, v) is a loading intensity in a hardening deformation theory. Take u (t) = v+δu (t),

θ∗ (t) = φ∗ + δθ∗ (t), assuming that v and φ∗ are time independent and observe that δu̇ =
(δu)′t ,δ θ̇

∗ = (δθ∗)′t, we make a simple calculus of the Gateaux derivative using the strain rate
tensor ε (v + δu), so we have

d

dt
ε (u) = AT (v + δu) (v + δu)′

=
1
2

[
∇ (δu)′ +∇

(
δt
u

)′ +∇ (δu)′∇ (u+ δu)t +∇
(
δt
u

)′∇ (v + δu)
]

=

= AT (v) (δu)′ +An (δu) (δu)′ .

In this way we introduce the so called compensatory operator An (u) : Ė → Ė, which is
symmetric. Based on the same idea we can deduce d

dt

(
∇ (δu)∇ (δu)T

)
= 2An (δu) (δu) and

2
∫ tf
0

(
An (δu) (δu)′ , S

)
Ω
dt =∫ tf

0
d
dt

(
∇δu∇ (δu)t , S

)
Ω
dt =

∫
Ω

∇ (δu)∇ (δu)T : Sdx, where S is a symmetric tensor with van-

ish initial state. We introduce G (δu, S) =
∫
Ω∇δu∇ (δu)t : Sdx = G (u− v, S), the gap function

associated with compensatory operator.
7. Some main results of existence, uniqueness and regularity. Let H1 (I, U) ={
u ∈ L2 (I, U) /u̇ ∈ L2 (I, U)

}
be a Hilbert space, where U is too a Hilbert space, each element

u ∈ H1 (I, U) is called generic the displacement process, associated with an mechanical system.
We can write the same for all spaces involved in this model: U , F , E, Σ. We have
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Theorem 7.1: Suppose that f0 ∈ L2
(
I,

(
H1 (Ω)

)3
)
, γ ∈ L∞

(
I,H1 (Γ)

)
, Φ is a convex,

lower semi-continuous functional, Ψc = ψS , for some surface S ⊂ H1 (I,Σ×Θ∗), H is a bounded
function, then there exists a solution (u, σ, ε, θ) ∈ H1 (I, U × Σ× E ×Θ∗) of the Problem 1.1

The uniqueness of the solution is a right consequence of the maximal monotony of the map
∂Ψc.

We can reduce the Problem 1.1 at the generalized sweeping process, as we have proved in [7]
and we make here the same remarks about the deformation with hardening as in previous paper.

We return to the Problem 1.2 and let

C =
{
v ∈ L2

(
I,H1 (Ω)

)
/v = ū on S+

u , vn ≤ 0 on S+
c

}
be the set of admissible functions, where S = I × Γ, the problem reads

Problem 7.1: Find u̇ ∈ C ∩B0

(
I, L2 (Ω)

)
, with u (x, 0) = u̇ (x.0) = 0 in Ω, such that∫

Q+

{üi (vi − u̇i) + ã (u, v − u̇)} dxdt+
∫
Sc

ν |σn (u)| (|vt| − |u̇t|) dxdt ≥

≥
∫
f0i (vi − u̇i) dxdt, for all v ∈ C, where ã (v, w) = σij (v) εij (w), B0 the vector valued space

of bounded functions.
A new set of admissible functions Ṽ =

{
v ∈ L2

(
I,H1 (Ω)

)
/v = 0 on S+

u

}
permit us to replace

contact conditions, prescribing the normal component of boundary stress σn = −1
ε [u̇n]+. The

penalized problem reads
Problem 7.2: Find u̇ε ∈ (ū+ V ) ∩B0

(
I, L2 (Ω)

)
, with uε (0) = u̇ε (0) = 0, such that∫

Q+

{(üεi − f0) (vi − u̇εi) + ã (uε, v − u̇ε)} dxdt+

+
∫

S+
c

|u̇εn|+
ε {(vn − u̇εn) + ν (|vT | − |u̇εT |)} dadt ≥ 0, for all v ∈ Ṽ .

The existence of a solution of this problem can be proved using Faedo-Galerkin method [8].
Proposition 7.1: Let ν have a compact support, Γ ∈ C1,1 and f0 ∈ L2 (Q+), ū ∈ H1 (Q+)

be such that C 6= ∅, then there exists at least one solution uε, for all ε small. We have the
following estimations
‖u̇ε‖L2(I,H1(Ω))∩B0(I,L2(Ω)) ≤ C, 1

ε

∥∥[u̇εn]+
∥∥

L2(Sc)∩H
1
2 (Sc)

≤ C, ‖üε‖L2(Q+) ≤ C, for same C

and uniformly in ε.
Using the compact embedding theorems for Sobolev spaces and passing to the limit ε→ 0 we

have
Theorem 7.2: Suppose that f0 ∈ L2

(
I,

(
H1 (Ω) , R3

))
, v ∈ L∞

(
I,H1 (Γu)

)
, A1, A2, ν ∈

L∞ (Ω), f1 ∈ L∞
(
I,H1

(
Γt, R

3
))

, then there exists a unique solution (u, σ, ε, θ) ∈ H1 (I, U × Σ× E ×Θ),

with u̇ ∈ L∞
(
I, Ė

)
, of the Problem 1.2.

In [7] a quasi-static process can be regarded as a limit process of dynamical one, presenting
a small inertial term.

8. An application to the traction of a control sample, experimental results. A
control sample is submitted to large deformation by traction, for which, by technological point
of view, we are interesting to know some proper values of the internal stress. The mechanical
system occupies a compact interval of real line and it is submitted to traction forces acting
on the side b. Let f (x, t) be a uni-dimensional density, continuous in x ∈ [a, b] and Lipschitz
continuous in t ∈ [0, T ].

We consider the displacement u : [a, b] × [0, T ] → R, a function with bounded variation on
[a, b], Lipschitz continuous in t, satisfying the boundary conditions: u (t, a) = 0,u (t, b) = h (t),
here h is a Lipschitz function, having an initial condition: u (0, x) = u0 (x).

Denote S = C ([a, b] ;R) the real space of real continuous functions on [a, b], E = M ([a, b] , R)
the space of measures on [a, b], we define the mechanical element (S, (., .) , E) endowed by the
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duality (s,m) =
∫

[a,b]

sdm, for all s ∈ S, m ∈ E. Let C be the subspace of measures, each

of them having vanish total sum, N the subspace of continuous constant functions on [a, b].
Denote A ∈ E a positive measure having a density a (x) on [a, b], which represent the elastic
coefficient al the material. The space E is endowed with the inner product (e, ẽ) =

∫
eAẽ =∫

[a,b]

e (x) a (x) ẽ (x) dx, where e (x) and ẽ (x) are the density of measures e and ẽ. Suppose H a

Hilbert space with the norm given by the scalar product . In H we can identify the admissible
elastic strain with admissible elastic stress. We have in view e, p, d which signify elastic strain,
plastic strain and visible strain of the system, e, p, d ∈ H. We consider the following problem:

Problem 8.1: Find e, p, d ∈ E, such that d ∈ C + h, e ∈ N + F, e = PSd, where S=
{s/α (x, t) ≤ s (x, t) ≤ β (x, t)} is the closed convex of the theory of plasticity for a system having
a nonlinear constitutive law of Hencky’s type.

If we consider the potential functional of the projection operator PS , that is

f (d) = sup
α≤s≤β

{
(d, s)− 1

2
‖d‖2

}
,

we can give another formulation of the constitutive law, e ∈ ∂f (d). In [7] is shown that f is
a regular functional except the endpoints of the interval [α, β] ..

Let V =

{
u (., t) : [a, b] → R/u (t, a) = 0, u continuous on [0, T ] , V

[a,b]
u <∞

}
be the space of

admissible displacements of the system, then we formulate the minimization problem

inf
v∈C(h)

{
f

(
h− dv

dx

)
+

(
dv

dx
, F

)}
, C (h) =

{
v ∈ V/h− dv

dx
∈ C

}
.

We remark that the minimization problem is a static one, but the deformation process is a quasi-
static one. Using a penalty method, the properties of the functional f, a relaxation algorithm
with a super-relaxation factor ω = 1.2, ω = 0.1we can find the time dependence of the elongation
as in Figure 8.1

Fig. 8.1 –Dependenta de timp a alungirii: curb experimental; curbe calculate: ω=0,1; ω=1,2.
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E-mail address: ghita@valahia.ro

46




