CONVEXITY AND LEAST SQUARE APPROXIMATION

OCTAVIAN MIRCIA GURZĂU

Abstract

In this paper we define the notion of $n-m$ convexity and find the connection with n-order convex function defined by Tiberiu Popoviciu.

Introduction and notation

Let E be a set of real numbers that contains at least $m+1$ distinct points:
(1) $x_{1}, x_{2}, \ldots, x_{m+1}$
and $m+1$ real numbers:
(2) $y_{1}, y_{2}, \ldots, y_{m+1}$

We note with $V\left(x_{i_{1}} \ldots, x_{i_{n+1}}\right)$ the Vandermonde's determinant on the nodes $x_{i_{1}} \ldots, x_{i_{n+1}}$ and with $L\left(x_{i_{1}}, \ldots x_{i_{n+1}} ; y_{i_{1}}, \ldots, y_{i_{n+1}}\right)$ the Lagrange polynomial on nodes $x_{i_{1}} \ldots, x_{i_{n+1}}$ and corresponding values $y_{i_{1}} \ldots, y_{i_{n+1}}$.

We call, as V. L. Gonciarov [1], for $n_{\mathrm{j}} m$ the interpolation polynomial of degree n in the meaning of least square determined by nodes (1) and numbers (2) the polynomial of degree at most $n \operatorname{Pn}(x 1, x 2, \ldots, x m+1 ; y 1, y 2, \ldots, y m+1)$ that minimizes:
(3) $\sum_{\mathrm{k}=1}^{\mathrm{m}+1}\left(P_{n}\left(x_{1}, x_{2}, \ldots, x_{m+1} ; y_{1}, y_{2}, \ldots, y_{m+1}\right)\left(x_{k}\right)-y_{k}\right)^{2}$

Theorem 1. (V. L. Gonciarov [1]) There is an unique polynomial of degree at most n that minimizes (3).

We reproduce here the proof for using it in the next section of paper:
Proof: We will use the following notation:
(4) $s_{k}=\sum_{i=1}^{m+1} x_{i}^{k}, k=0,1, \ldots, 2 n \quad \gamma l=\sum_{i=1}^{m+1} y_{i} x_{i}^{l}, l=0,1, \ldots, n$.

From the minimum condition of the sum (3) it result that the coefficients $a_{i}, i=0,1, \ldots, n$ of the polynomial $\operatorname{Pn}(x 1, x 2, \ldots, x m+1 ; y 1, y 2, \ldots, y m+1)$ satisfy the system:

$$
\sum_{i=0}^{n} a_{i} s_{i+k}=\gamma_{k}, k=0,1, \ldots, n
$$

It follows that:

$$
P_{n}\left(x_{1}, \ldots x_{m+1} ; y_{1}, \ldots y_{m+1}\right)(x)=-\frac{\left|\begin{array}{llll}
c_{0} & c_{1} & \ldots c_{n} & \gamma_{0} \tag{5}\\
c_{1} & c_{2} & \ldots c_{n+1} & \gamma_{1} \\
\ldots & \ldots & \ldots & \ldots \\
c_{n} & c_{n+1} & \ldots c_{2 n} & \gamma_{n} \\
1 & x & \ldots x^{n} & 0
\end{array}\right|}{\left|\begin{array}{lllll}
c_{0} & c_{1} & \ldots c_{n} & \\
c_{1} & c_{2} & \ldots c_{n+1} & \\
\ldots & \ldots & \ldots & \ldots \\
c_{n} & c_{n+1} & \ldots c_{2 n} &
\end{array}\right|},
$$

where the denominator is (see [2]) is a sum of square of Vandermonde's determinants on $n+1$ distinct nodes from (1).

2. Main results

The connection between the polynomial $\operatorname{Pn}(x 1, x 2, \ldots, x m+1 ; y 1, y 2, \ldots, y m+1)$ and Lagrange polynomials on nodes (1) is:

Theorem 2 The polynomial $\operatorname{Pn}(x 1, x 2, \ldots, x m+1 ; y 1, y 2, \ldots, y m+1)$ is a convex sum of the Lagrange polynomiasl on $n+1$ distinct nodes from (1):

$$
\begin{equation*}
=\frac{P_{n}\left(x_{1}, x_{2}, \ldots, x_{m+1} ; y_{1}, y_{2}, \ldots, y_{m+1}\right)(x)=}{\sum_{1 \leq t_{1} \leq t_{2} \leq \ldots \leq t_{n+1} \leq m+1} V^{2}\left(x_{t_{1}}, x_{t_{2}}, \ldots, x_{t_{n+1}}\right) L\left(P_{n} ; x_{t_{1}}, x_{t_{2}}, \ldots, x_{t_{n+1}} ; y_{t_{1}}, y_{t_{2}}, \ldots, y_{t_{n+1}}\right)(x)} \sum_{1 \leq t_{1} \leq t_{2} \leq \ldots \leq t_{n+1} \leq m+1} V^{2}\left(x_{t_{1}}, x_{t_{2}}, \ldots, x_{t_{n+1}}\right) \text {. } \tag{6}
\end{equation*}
$$

Proof. The determinant that appears at the denominator in (5) is the determinant of the matrix product B.C where:

$$
\begin{aligned}
& B=-\left(\begin{array}{cccccc}
1 & 1 & 1 & \ldots & 1 & 0 \\
x_{1} & x_{2} & x_{3} & \ldots & x_{m+1} & 0 \\
x_{1}^{2} & x_{2}^{2} & x_{3}^{2} & \ldots & x_{m+1}^{2} & 0 \\
\ldots & \ldots & \ldots & \ldots & \ldots & \ldots \\
x_{1}^{n} & x_{2}^{n} & x_{3}^{n} & \ldots & x_{m+1}^{n} & 0 \\
0 & 0 & 0 & \ldots & 0 & 1
\end{array}\right), \\
& C=\left(\begin{array}{cccccc}
1 & x_{1} & x_{1}^{2} & \ldots & x_{1}^{n} & y_{1} \\
1 & x_{2} & x_{2}^{2} & \ldots & x_{2}^{n} & y_{2} \\
1 & x_{3} & x_{3}^{2} & \ldots & x_{3}^{n} & y_{3} \\
\ldots & \ldots & \ldots & \ldots & \ldots & \ldots \\
1 & x_{m+1} & x_{m+1}^{2} & \ldots & x_{m+1}^{n} & y_{m+1} \\
1 & x & x^{2} & \ldots & x^{n} & 0
\end{array}\right)
\end{aligned}
$$

Using Cauchy-Binet formula (see [2]) it result that:

$$
\operatorname{det}(B C)=\sum_{1 \leq i_{1} \leq i_{2} \leq \ldots \leq i_{n+1} \leq m+1} \operatorname{det}\left(\left[b_{k, i_{k}}\right]_{k=\overline{1, n+2}}\right) \operatorname{det}\left(\left[c_{k, i_{k}}\right]_{k=\overline{1, n+2}}\right)
$$

If in the above sum $i_{n+2} \neq m+2$ the first determinant has a zero row and is null. If $i_{n+2}=m+2$ than the fisrt determinant is $V\left(x_{i_{1}} \ldots, x_{i_{n+1}}\right)$ and the second determinant is $V\left(x_{i_{1}}, \ldots, x_{i_{n+1}}\right) L\left(x_{i_{1}}, \ldots x_{i_{n+1}} ; y_{i_{1}}, \ldots, y_{i_{n+1}}\right)(x)$ so that the denominator from (5) is:

$$
\sum_{\substack{1 \leq i_{1} \leq i_{2} \leq \ldots \leq i_{n+1} \leq m+1}} V^{2}\left(x_{i_{1}}, x_{i_{2}}, \ldots, x_{i_{n+1}}\right) .
$$

and the numerator is (see the proof of theorem 1) :

$$
\sum_{1 \leq i_{1} \leq i_{2} \leq \ldots \leq i_{n+1} \leq m+1} V^{2}\left(x_{i_{1}}, x_{i_{2}}, \ldots, x_{i_{n+1}}\right) .
$$

For a function $f: E \rightarrow$ Rand $y i=f(x i)$ we denote the above polynomials with:

$$
\operatorname{Pn}(x 1, x 2, \ldots, x m+1 ; f) .
$$

Definition 1 The coefficient of $x n f r o m \operatorname{Pn}(x 1, x 2, \ldots, x m+1 ; f)$ is called divided difference of order n-m of the function f on nodes (1) and will be denoted with:

$$
\left[x_{1}, \ldots x_{m+1} ; f\right]_{n}
$$

Definition 2 The function $f: E \rightarrow R$ is called $n-m$ order convex (respectively nonconcave,polynomial, nonconvex, concave) if for all distinct points (1) from E :

$$
[x 1, x 2, \ldots, x m+1 ; f] n>(\text { respectively } \geq,=, \leq,<) 0 .
$$

Theorem 2 If the function $f: E \rightarrow R$ is a n-order convex function on E then f is n - m order convex on E for every $m>n+1$.

Proof. This theorem results from formula (6).
Theorem. 3 If $f:[a, b] \rightarrow R$ has continuous derivative of order $n+1$ and f is n - m order convex on $[a, b]$ then f is n-order convex on $[a, b]$.

Proof. We suppose that f is not convex of order n. Than there is a point $c \in(a, b)$ in so that the derivative of order $n+1$ is negative in this point. The there is a neighbourhood of the point c so that the divided difference on every $n+2$ distinct points from this neighbourhood is negative (the mean theorem for divided differences). If we choose all nodes (1) in this neighbourhood it results from (6) that f is not a n-m order convex function.

References

[1] V.L. Gonciarov. Teoria interpolirovania i priblijenia functii. Gosudarstvenoe izdatelistvo tehniko-teoreticeskoi literaturî, 1954.
[2] Samuel Karlin Si William J. Studden. Total Positivity. Interscience Publisher, a division of John Wiley \& Sons, New York.London.Sydney, 1967.
[3] Tiberiu Popoviciu. Notes sur les fonctions convexes d'order supérieur IX. Bull. Math. de la Soc. Roum. des Sci., LXIII(12), pp: 85-141, 1941.

Department of Mathematics, Technical University of Cluj-Napoca, Str. Constantin Daicoviciu 15, 400020 Cluj - Napoca, Romania
E-mail address: gurzau@math.utcluj.ro

