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CONVEXITY AND LEAST SQUARE APPROXIMATION

OCTAVIAN MIRCIA GURZĂU

Abstract. In this paper we define the notion of n-m convexity and find the connection with
n-order convex function defined by Tiberiu Popoviciu.

Introduction and notation

Let E be a set of real numbers that contains at least m + 1 distinct points:
(1) x1, x2, ..., xm+1

and m + 1 real numbers:
(2) y1, y2, ..., ym+1

We note with V
(
xi1 ..., xin+1

)
the Vandermonde’s determinant on the nodes xi1 ..., xin+1 and

with L
(
xi1 , ...xin+1 ; yi1 , ..., yin+1

)
the Lagrange polynomial on nodes xi1 ..., xin+1 and correspond-

ing values yi1 ..., yin+1 .
We call, as V. L. Gonciarov [1], for n¡m the interpolation polynomial of degree n in the

meaning of least square determined by nodes (1) and numbers (2) the polynomial of degree at
most n Pn(x1, x2, ..., xm + 1; y1, y2, ..., ym + 1) that minimizes:

(3)
m+1∑
k=1

(Pn (x1, x2, ..., xm+1; y1, y2, ..., ym+1) (xk)− yk)
2

Theorem 1. (V. L. Gonciarov [1]) There is an unique polynomial of degree at most n that
minimizes (3).

We reproduce here the proof for using it in the next section of paper:
Proof: We will use the following notation:

(4) sk =
m+1∑
i=1

xk
i , k = 0, 1, ..., 2n γl =

m+1∑
i=1

yix
l
i, l = 0, 1, ..., n..

From the minimum condition of the sum (3) it result that the coefficients ai, i = 0, 1, ..., nof
the polynomial Pn(x1, x2, ..., xm + 1; y1, y2, ..., ym + 1 ) satisfy the system:∑n

i=0
aisi+k = γk, k = 0, 1, ..., n.

It follows that:

(5) Pn (x1, ...xm+1; y1, ...ym+1) (x) = −

�
�
�
�
�
�
�
�
�
�
�
�
�

c0 c1 ...cn γ0

c1 c2 ...cn+1 γ1

...
cn

...
cn+1

...

...c2n

...
γn

1 x ..xn 0

�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�

c0 c1 ...cn

c1 c2 ...cn+1

...
cn

...
cn+1

...

...c2n

...

�
�
�
�
�
�
�
�
�
�
�
�
�

,

where the denominator is (see [2]) is a sum of square of Vandermonde’s determinants on n+1
distinct nodes from (1).
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2. Main results

The connection between the polynomial Pn(x1, x2, ..., xm+1; y1, y2, ..., ym+1 ) and Lagrange
polynomials on nodes (1) is:

Theorem 2 The polynomial Pn(x1, x2, ..., xm + 1; y1, y2, ..., ym + 1) is a convex sum of the
Lagrange polynomiasl on n+1 distinct nodes from (1):

(6) Pn(x1, x2, . . . , xm+1; y1, y2, . . . , ym+1)(x) =

=

∑
1≤t1≤t2≤...≤tn+1≤m+1

V 2(xt1 , xt2 , . . . , xtn+1)L(Pn;xt1 , xt2 , . . . , xtn+1 ; yt1 , yt2 , . . . , ytn+1)(x)∑
1≤t1≤t2≤...≤tn+1≤m+1

V 2(xt1 , xt2 , . . . , xtn+1)

Proof. The determinant that appears at the denominator in (5) is the determinant of the
matrix product B.C where:

B = −


1 1 1 . . . 1 0
x1 x2 x3 . . . xm+1 0
x2

1 x2
2 x2

3 . . . x2
m+1 0

. . . . . . . . . . . . . . . . . .
xn

1 xn
2 xn

3 . . . xn
m+1 0

0 0 0 . . . 0 1

 ,

C =


1 x1 x2

1 . . . xn
1 y1

1 x2 x2
2 . . . xn

2 y2

1 x3 x2
3 . . . xn

3 y3

. . . . . . . . . . . . . . . . . .
1 xm+1 x2

m+1 . . . xn
m+1 ym+1

1 x x2 . . . xn 0


Using Cauchy-Binet formula (see [2]) it result that:

det(BC) =
∑

1≤i1≤i2≤...≤in+1≤m+1

det
(
[bk,ik ]k=1,n+2

)
det

(
[ck,ik ]k=1,n+2

)
If in the above sum in+2 6= m + 2 the first determinant has a zero row and is null. If

in+2 = m + 2 than the fisrt determinant is V
(
xi1 ..., xin+1

)
and the second determinant is

V
(
xi1 , ..., xin+1

)
L

(
xi1 , ...xin+1 ; yi1 , ..., yin+1

)
(x) so that the denominator from (5) is:∑

1≤i1≤i2≤...≤in+1≤m+1

V 2(xi1 , xi2 , . . . , xin+1)·

·L(Pn;xi1 , xi2 , . . . , xin+1 ; yi1 , yi2 , . . . , yin+1)(x)
and the numerator is (see the proof of theorem 1) :∑

1≤i1≤i2≤...≤in+1≤m+1

V 2(xi1 , xi2 , . . . , xin+1).

For a function f : E → Rand yi = f(xi) we denote the above polynomials with:

Pn(x1, x2, ..., xm + 1; f).

Definition 1 The coefficient of xnfrom Pn(x1, x2, ..., xm + 1; f ) is called divided difference
of order n-m of the function f on nodes (1) and will be denoted with:

[x1, ...xm+1; f ]n
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Definition 2 The function f : E → R is called n - m order convex (respectively noncon-
cave,polynomial, nonconvex, concave) if for all distinct points (1) from E :

[x1, x2, ..., xm + 1; f ]n > (respectively ≥,=,≤, <)0.

Theorem 2 If the function f : E → R is a n-order convex function on E then f is n-m order
convex on E for every m > n + 1.

Proof. This theorem results from formula (6).

Theorem.3 If f : [a, b] → R has continuous derivative of order n + 1 and f is n-m order
convex on [a, b] then f is n-order convex on [a, b] .

Proof. We suppose that f is not convex of order n . Than there is a point c ∈ (a, b) in so that
the derivative of order n+1 is negative in this point. The there is a neighbourhood of the point
c so that the divided difference on every n+2distinct points from this neighbourhood is negative
(the mean theorem for divided differences). If we choose all nodes (1) in this neighbourhood it
results from (6) that f is not a n-m order convex function.
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