GENERALIZATIONS AND REFINEMENTS FOR BERGSTRÖM AND RADON'S INEQUALITIES

DORIN MĂRGHIDANU

Abstract

In the present work there are pointed and demonstrated some generalizations and refinements for Bergström and Radon's inequalities. But not before making some historical remaks on the parenthood of these inequalities. We present a new demonstration and a refinement for Radon's inequality, which is based on a recently initiated method, using the monotony of a sequence associated to the inequality. Some applications are also presented. Keywords: Bergström inequality, C-B-S inequality, Radon inequality, power-means inequality, refinement Mathematics Subject Classification : 26D15

It is well-known and very often used lately- Bergström's inequality (see [7], [11] , [14]), namely,

1. Proposition (Bergström's inequality)

If $x_{k} \in R, a_{k}>0, k \in\{1,2, \ldots, n\}$, then the following inequality holds,

$$
\begin{equation*}
\frac{x_{1}^{2}}{a_{1}}+\frac{x_{2}^{2}}{a_{2}}+\ldots+\frac{x_{n}^{2}}{a_{n}} \geq \frac{\left(x_{1}+x_{2}+\ldots x_{n}\right)^{2}}{a_{1}+a_{2}+\ldots a_{n}} \tag{1}
\end{equation*}
$$

with equality for : $\frac{x_{1}}{a_{1}}=\frac{x_{2}}{a_{2}}=\ldots=\frac{x_{n}}{a_{n}}$.
It is equivalent with Cauchy-Buniakowski-Schwarz inequality .
For the less simple implication, Bergström inequality $\Rightarrow C$ - B-S inequality, see [2], [5], [20].
This inequality is often called Titu Andreescu's inequality (or Andreescu lemma -presented in [1], having as base a problem published by the first author in the RMT journal, in 1979), or Engel's inequality (or Cauchy-Schwarz inequality in Engel form - in Germanofon mathematical literature, [12]).

In fact, this inequality, for the case $\boldsymbol{n}=\mathbf{2}$ was enounced by H. Bergström in 1949 , in the more general frame of complex number modules, from denominators and in more relaxed conditions, for nominators (see [7], [14], [11]):

- Let $z_{1}, z_{2} \in \mathbf{C}$ and $u, v \in \mathbf{R}$ such that $u \neq 0, v \neq 0, u+v \neq 0$.

Then we have:

$$
\begin{align*}
& \text { i) } \frac{\left|z_{1}\right|^{2}}{u}+\frac{\left|z_{2}\right|^{2}}{v} \geq \frac{\left|z_{1}+z_{2}\right|^{2}}{u+v} \quad, \quad \text { if } \frac{1}{u}+\frac{1}{v}>0 \tag{2}\\
& \text { ii) } \frac{\left|z_{1}\right|^{2}}{u}+\frac{\left|z_{2}\right|^{2}}{v} \leq \frac{\left|z_{1}+z_{2}\right|^{2}}{u+v}, \quad \text { if } \frac{1}{u}+\frac{1}{v}<0
\end{align*}
$$

The equality holds if and only if $\frac{z_{1}}{u}=\frac{z_{2}}{v}$.
More than that, the inequality (1), is a particular case of some of Radon's inequality, discovered ever since 1913 , (see [19], [9] and rediscovered (?..) in [16] and [6]).

2. Proposition (Radon's inequality)

If $a_{k}, x_{k}>0, p>0, k \in\{1,2, \ldots, n\}$, then the following inequality holds,

JOURNAL OF SCIENCE AND ARTS

$$
\begin{equation*}
\sum_{k=1}^{n} \frac{x_{k}^{p+1}}{a_{k}^{p}} \geq \frac{\left(\sum_{k=1}^{n} x_{k}\right)^{p+1}}{\left(\sum_{k=1}^{n} a_{k}\right)^{p}} \tag{4}
\end{equation*}
$$

with equality for : $\frac{x_{1}}{a_{1}}=\frac{x_{2}}{a_{2}}=\ldots=\frac{x_{n}}{a_{n}}$.
Clearly , $p=1$ - Bergström's inequality is obtained.
There are known some demonstrations of Radon's inequality, by using Hölder's inequality ([9], [16]) , or by using the mathematical induction, [6] . In what is to follow, we are going to demonstrate Radon's inequality through a method recently initiated in [13] , which uses the monotony of an associated sequence.

Proof

Proof the sequence $, d_{n}:=\frac{x_{1}^{p+1}}{a_{1}^{p}}+\frac{x_{2}^{p+1}}{a_{2}^{p}}+\ldots+\frac{x_{n}^{p+1}}{a_{n}^{p}}-\frac{\left(x_{1}+x_{2}+\ldots+x_{n}\right)^{p+1}}{\left(a_{1}+a_{2}+\ldots+a_{n}\right)^{p}}$,
for which we are going to prove that $d_{n} \geq 0$, for any $n \geq 2$. For this we are going to demonstrate something more, namely that $\left(d_{n}\right)_{n}$ is an increasing monotonous sequence .

Indeed, we have,

$$
\begin{aligned}
d_{n+1}-d_{n} & =\sum_{k=1}^{n+1} \frac{x_{k}^{p+1}}{a_{k}^{p}}-\frac{\left(\sum_{k=1}^{n+1} x_{k}\right)^{p+1}}{\left(\sum_{k=1}^{n+1} a_{k}\right)^{p}}-\sum_{k=1}^{n} \frac{x_{k}^{p+1}}{a_{k}^{p}}+\frac{\left(\sum_{k=1}^{n} x_{k}\right)^{p+1}}{\left(\sum_{k=1}^{n} a_{k}\right)^{p}}= \\
& =\frac{\left(\sum_{k=1}^{n} x_{k}\right)^{p+1}}{\left(\sum_{k=1}^{n} a_{k}\right)^{p}}+\frac{x_{n+1}^{n+1}}{a_{n+1}^{p}}-\frac{\left(\sum_{k=1}^{n+1} x_{k}\right)^{2}}{\sum_{k=1}^{n+1} a_{k}} \geq 0 .
\end{aligned}
$$

For the last inequality, Radon's inequality has been used, for $n=2$,

$$
\begin{equation*}
\frac{\alpha^{p+1}}{a^{p}}+\frac{\beta^{p+1}}{b^{p}} \geq \frac{(\alpha+\beta)^{p+1}}{(a+b)^{p}} \tag{5}
\end{equation*}
$$

with : $\alpha=\sum_{k=1}^{n} x_{k} \quad, \quad \beta=x_{n+1} \quad, \quad a=\sum_{k=1}^{n} a_{k} \quad, \quad b=a_{n+1}$.
(For the demonstration of the inequality (5), see [6]).
It results that,

$$
\begin{equation*}
d_{n} \geq d_{n-1} \geq \ldots \geq d_{2} \geq d_{1}=0 \tag{6}
\end{equation*}
$$

3. Application If $a, b, c \in \mathrm{R}_{+}$, then,

$$
\begin{equation*}
\frac{a}{\sqrt{a^{2}+8 b c}}+\frac{b}{\sqrt{b^{2}+8 c a}}+\frac{c}{\sqrt{c^{2}+8 a b}} \geq 1 \tag{7}
\end{equation*}
$$

(The 42nd OIM, Washington D.C., 2001, Problem 2)
We write the left member of the inequality under the form,

$$
M_{s}:=\frac{a^{\frac{3}{2}}}{\sqrt{a^{3}+8 a b c}}+\frac{b^{\frac{3}{2}}}{\sqrt{b^{3}+8 a b c}}+\frac{c^{\frac{3}{2}}}{\sqrt{c^{3}+8 a b c}}
$$

JOURNAL OF SCIENCE AND ARTS

and Radon's inequality is applied for $n=3$,

$$
\frac{x_{1}^{p+1}}{a_{1}^{p}}+\frac{x_{2}^{p+1}}{a_{2}^{p}}+\frac{x_{3}^{p+1}}{a_{3}^{p}} \geq \frac{\left(x_{1}+x_{2}+x_{3}\right)^{p+1}}{\left(a_{1}+a_{2}+a_{3}\right)^{p}},
$$

with the substitutions: $x_{1} \rightarrow a, x_{2} \rightarrow b, x_{3} \rightarrow c ; a_{1} \rightarrow a^{3}+8 a b c, a_{2} \rightarrow b^{3}+8 a b c, a_{3} \rightarrow c^{3}+8 a b c$ and $p=1 / 2$.

It is obtained,

$$
M_{s} \geq \frac{(a+b+c)^{\frac{3}{2}}}{\left(a^{3}+b^{3}+c^{3}+24 a b c\right)^{\frac{1}{2}}}=\sqrt{\frac{(a+b+c)^{3}}{a^{3}+b^{3}+c^{3}+24 a b c}} \geq 1 .
$$

The last inequality is reduced - after some simple calculations, to the obvious inequality , $a\left(b^{2}+c^{2}\right)+a\left(b^{2}+c^{2}\right)+a\left(b^{2}+c^{2}\right) \geq 6 a b c$.

The demonstration method given previously and in [13], also underlines an interesting method of refining the inequalities, which we can also be seen in the following theorem,

4. Theorem (for refinement of Radon's inequality)

For $a_{k}, x_{k}>0, p \geq 1, k \in\{1,2, \ldots, n\}, n \in \mathrm{~N}_{\geq 2}$, the inequality takes place,

$$
\begin{equation*}
\sum_{k=1}^{n} \frac{x_{k}^{p+1}}{a_{k}^{p}} \geq \frac{\left(\sum_{k=1}^{n} x_{k}\right)^{p+1}}{\left(\sum_{k=1}^{n} a_{k}\right)^{p}}+\max _{1 \leq i<j \leq n}\left(\frac{x_{i}^{p+1}}{a_{i}^{p}}+\frac{x_{j}^{p+1}}{a_{j}^{p}}-\frac{\left(x_{i}+x_{j}\right)^{p+1}}{\left(a_{i}+a_{j}\right)^{p}}\right) \tag{8}
\end{equation*}
$$

with equality if and only if, $\frac{x_{1}}{a_{1}}=\frac{x_{2}}{a_{2}}=\ldots=\frac{x_{n}}{a_{n}}$.

Proof

As in the inequality sequence (6), $d_{1}=0$, it only remains significant the inequality $d_{n} \geq d_{2}$, $(\forall) n \in \mathrm{~N}_{\geq 2}$.

But,

$$
d_{2}=\frac{x_{1}^{p+1}}{a_{1}^{p}}+\frac{x_{2}^{p+1}}{a_{2}^{p}}-\frac{\left(x_{1}+x_{2}\right)^{p+1}}{\left(a_{1}+a_{2}\right)^{p}},
$$

therefore ,

$$
d_{n} \geq \frac{x_{1}^{p+1}}{a_{1}^{p}}+\frac{x_{2}^{p+1}}{a_{2}^{p}}-\frac{\left(x_{1}+x_{2}\right)^{p+1}}{\left(a_{1}+a_{2}\right)^{p}}, \quad(\forall) n \in N_{\geq 2} .
$$

In the end, because of \boldsymbol{d}_{n} 's symmetry relatively to \boldsymbol{a}_{i}, and \boldsymbol{x}_{j} variables, $i, j \in\{1,2, \ldots, n\}$, it results that $d_{n} \geq \frac{x_{i}^{p+1}}{a_{i}^{p}}+\frac{x_{j}^{p+1}}{a_{j}^{p}}-\frac{\left(x_{i}+x_{j}\right)^{p+1}}{\left(a_{i}+a_{j}\right)^{p}},(\forall) n \in \mathrm{~N}_{\geq 2},(\forall) i, j \in\{1,2, \ldots, n\}$, hence the enounced relation holds. The equality condition $\frac{x_{1}}{a_{1}}=\frac{x_{2}}{a_{2}}=\ldots=\frac{x_{n}}{a_{n}}$, is a necessary and sufficient condition for the equality in (4) as well as for the cancellation of the quantity

$$
\max _{1 \leq i<j \leq n}\left(\frac{x_{i}^{p+1}}{a_{i}^{p}}+\frac{x_{j}^{p+1}}{a_{j}^{p}}-\frac{\left(x_{i}+x_{j}\right)^{p+1}}{\left(a_{i}+a_{j}\right)^{p}}\right) .
$$

For $p=1$, a result proven in [13] is obtained.

5. Corollary (refinement of Bergström's inequality)

For $x_{k} \in R, a_{k}>0, k \in\{1,2, \ldots, n\}, n \in \mathrm{~N}_{\geq 2}$, the inequality holds ,

$$
\begin{equation*}
\frac{x_{1}^{2}}{a_{1}}+\frac{x_{2}^{2}}{a_{2}}+\ldots+\frac{x_{n}^{2}}{a_{n}} \geq \frac{\left(x_{1}+x_{2}+\ldots x_{n}\right)^{2}}{a_{1}+a_{2}+\ldots a_{n}}+\max _{1 \leq i<j \leq n} \frac{\left(a_{i} x_{j}-a_{j} x_{i}\right)^{2}}{a_{i} a_{j} \cdot\left(a_{i}+a_{j}\right)}, \tag{9}
\end{equation*}
$$

JOURNAL OF SCIENCE AND ARTS

with equality if and only if , $\frac{x_{1}}{a_{1}}=\frac{x_{2}}{a_{2}}=\ldots=\frac{x_{n}}{a_{n}}$.

6. Remark

The result from Theorem 4, Corollary 5 respectively, also forms a generalization of a contest problem from [18].

Indeed, for $x_{k}=1$ and $a_{k} \rightarrow x_{k}$, the enounce is obtained. Being $n \geq 2$ a natural number and $x_{1}, x_{2}, \ldots, x_{n}>0$. Then :

$$
\begin{equation*}
\frac{1}{x_{1}}+\frac{1}{x_{2}}+\ldots+\frac{1}{x_{n}}-\frac{n^{2}}{x_{1}+x_{2}+\ldots x_{n}} \geq \max _{1 \leq i<j \leq n} \frac{\left(x_{i}-x_{j}\right)^{2}}{x_{i} x_{j} \cdot\left(x_{i}+x_{j}\right)} \tag{10}
\end{equation*}
$$

For the demonstration of the next result we need the following,

7. Lemma

For $m \in \mathbf{R}_{\geq 1}, n \in \mathbf{N}^{*}$ and $x_{i}>0$, then ,

$$
\begin{equation*}
\sum_{k=0}^{n} x_{k}^{m} \geq \frac{1}{n^{m-1}} \cdot\left(\sum_{k=1}^{n} x_{k}\right)^{m} \tag{11}
\end{equation*}
$$

Proof

The inequality comes from the inequality between the power-means ([8], [9], [15]), namely, if $r, s \in \mathrm{R}, r \geq s$, then the inequality takes place,

$$
\begin{equation*}
\left(\frac{x_{1}^{r}+x_{2}^{r}+\ldots+x_{n}^{r}}{n}\right)^{1 / r} \geq\left(\frac{x_{1}^{s}+x_{2}^{s}+\ldots+x_{n}^{s}}{n}\right)^{1 / s} . \tag{12}
\end{equation*}
$$

For $r=m$ and $s=1$, the result is obtained.

8. Theorem (the generalization of Radon's inequality)

If $a_{k}, x_{k}>0, p>0, q \geq 1, k \in\{1,2, \ldots, n\}$, then the inequality takes place,

$$
\begin{equation*}
\sum_{k=1}^{n} \frac{x_{k}^{p+q}}{a_{k}^{p}} \geq \frac{1}{n^{q-1}} \cdot \frac{\left(\sum_{k=1}^{n} x_{k}\right)^{p+q}}{\left(\sum_{k=1}^{n} a_{k}\right)^{p}} \tag{13}
\end{equation*}
$$

with equality for: $\frac{x_{1}}{a_{1}}=\frac{x_{2}}{a_{2}}=\ldots=\frac{x_{n}}{a_{n}}$.

Proof

Using Radon's inequality and the previous lemma, we successively have:

$$
\begin{gathered}
\sum_{k=1}^{n} \frac{x_{k}^{p+q}}{a_{k}^{p}}=\sum_{k=1}^{n} \frac{\left(x_{k}^{\frac{p+q}{p+1}}\right)^{p+1}}{a_{k}^{p}} \stackrel{(4)}{\geq} \frac{\left(\sum_{k=1}^{n} x_{k}^{\frac{p+q}{p+1}}\right)^{p+1}}{\left(\sum_{k=1}^{n} a_{k}\right)^{p}} \stackrel{(11)}{\geq} \\
\stackrel{(11)}{\geq} \frac{\left[\frac{1}{n^{p+q}-1} \cdot\left(\sum_{k=1}^{n} x_{k}\right)^{\frac{p+q}{p+1}}\right]^{p+1}}{\left(\sum_{k=1}^{n} a_{k}\right)^{p}}=\frac{1}{n^{q-1}} \cdot \frac{\left(\sum_{k=1}^{n} x_{k}\right)^{p+q}}{\left(\sum_{k=1}^{n} a_{k}\right)^{p}}
\end{gathered}
$$

For $q=1$ in Theorem 8, Radon's inequality is obtained, and for $p=q=1$, Bergström's inequality is obtained.

JOURNAL OF SCIENCE AND ARTS

9. Corollary (the generalization of Radon's inequality - a variant) If $a_{k}, x_{k}>0, k \in$ $\{1,2, \ldots, n\}, p>0, r \geq p+1$, then the inequality holds,

$$
\begin{equation*}
\sum_{k=1}^{n} \frac{x_{k}^{r}}{a_{k}^{p}} \geq \frac{1}{n^{r-p-1}} \cdot \frac{\left(\sum_{k=1}^{n} x_{k}\right)^{r}}{\left(\sum_{k=1}^{n} a_{k}\right)^{p}}, \tag{14}
\end{equation*}
$$

with equality for : $\frac{x_{1}}{a_{1}}=\frac{x_{2}}{a_{2}}=\ldots=\frac{x_{n}}{a_{n}}$.

Proof

Noting $r:=p+q$ in Theorem $8, r \geq p+1$ results, and $q-1=r-p-1$, hence the enounce .
A similar result to the one in relation (14) is obtained in [17], using Jensen's inequality.

10. Application

If a, b, c are the sides of a triangle and $r \geq 2$, then,

$$
\begin{equation*}
\frac{a^{r}}{b+c-a}+\frac{b^{r}}{c+a-b}+\frac{c^{r}}{a+b-c} \geq \frac{(a+b+c)^{r-1}}{3^{r-2}}, \tag{15}
\end{equation*}
$$

or with the triangle known notations, we have ,

$$
\begin{equation*}
\frac{a^{r}}{p-a}+\frac{b^{r}}{p-b}+\frac{c^{r}}{p-c} \geq \frac{2^{r-1}}{3^{r-2}} \cdot p^{r-1} . \tag{16}
\end{equation*}
$$

Using the above inequality extensions, numberless other inequalities, such as those in : [1] , [2] , [3] , [16] , [17] - can be proved or generalized .

New ones can also be obtained.

References

[1] Andreescu T., Enescu B., Mathematical Olympiad Treasures, Birkhauser, 2003
[2] Andreescu T., Lascu M., Asupra unei inegalităt̆i, Gazeta Matematică , seria B, Anul CVI, nr. 9-10, pp. 322-326, 2001.
[3] Becheanu M., Enescu B., Inegalităţi elementare... şi mai puţin elementare, Editura Gil, Zalau, 2002 .
[4] Beckenbach E.F. \& Bellman R., Inequalities, Springer-Verlag, Berlin-Heidelberg-New York, 1961.
[5] Bencze M., A New Proof of the Cauchy-Bunjakovski-Schwarz Inequality, OCTOGON Mathematical Magazine, Vol. 10, No. 2, pp.841- 842, October, 2002
[6] Bencze M., Inequalities Connected to the Cauchy-Schwarz Inequality, OCTOGON Mathematical Magazine, Vol. 15, No. 1, pp.58- 62, April, 2007.
[7] Bergström H., A triangle - inequality for matrices, in: Den Elfte Skandinaviske Matematikerkongress, CityTrondheim,1949, Johan Grundt Tanums Forlag, pp.115-118, CityplaceOslo,1952 .
[8] Bullen P. S.\& Mitrinovi D. S. \& Vasi P. M., Means and Their Inequalities, D. Reidel Publidshing Company, Dordrecht/Boston, 1988 .
[9] Bullen P. S., Handbook of Means and Their Inequalities, Kluwer Academic Publishers, Dordrecht/Boston/London, 2003 .
[10] Dragomir S. S., A Survey on Cauchy-Buniakowsky-Schwartz Type Discrete Inequalities, january 10, Melbourne, 2003 .
[11] Florea A., Niculescu P.C., Asupra inegalităţilor lui Bergström, Gazeta Matematică , seria B, Anul CVII , nr. 11, 2002.
[12] Grinberg D., Arthur Engel's minima principle and the Cauchy-Schwarz inequality / Andreescu Lemma , http://www.artofproblemsolving.com/Forum/viewtopic.php?p=107331\#107331
[13] Mărghidanu D., Daz-Barrero J.L., Rădulescu S., New Refinements of Some Classical Inequalities, (send for publication).
[14] Mitrinovi D. S. (in cooperation with Vasi P. M.), Analytic Inequalities, Springer-Verlag, Band 165, StateplaceBerlin, 1970 .
[15] Mitrinovi D. S., Pecaric J.E., Fink A.M., Classical and New Inequalities in Analysis, Kluwer Acad. Press., 1993.

JOURNAL OF SCIENCE AND ARTS

[16] Panaitopol L., Consecinţe ale inegalităţii lui Holder, Gazeta Matematică, seria B, Anul CVII, nr. 4, pp. 145-147, 2002.
[17] Papacu N., Generalizări ale unor inegalităţi, Arhimede, nr. 5-6, pp. 2-8, 2003.
[18] Rădulescu S., Daz-Barrero J.L., Problema 9, cls. a-X-a, Concursul Naţional ARHIMEDE, etapa finală, Bucureşti, 12 mai, 2007 .
[19] Radon J., ber die absolut additiven Mengenfunktionen, Wiener - Sitzungsber., (IIa), vol. 122, p. 1295-1438, 1913.
[20] Steele J. M., Cauchy-Schwarz Inequality: Yet Another Proof.
Colegiul Naţional"A.I. Cuza", Corabia
E-mail address: d.marghidanu@gmail.com

