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LINEAR PERTURBATIONS FOR THE DIRICHLET PROBLEM

CRISTINEL MORTICI

Abstract. In this paper we study a problem of type�
−∆u + u + Au = f in D

u = 0 on ∂D

which generalizes a result from [3], p.175. The results are given in theorem 1.1 and for case
with bounded domain of class C1, in theorem 2.2. Remark that these results remains true in
case A nonlinear and the above problem can be establish also for variational inequalities ([3],
p.118-120). Nonlinear case is studied using the author’s results from [5].

Let D ⊂ RN be open and let A : D(A) ⊂ L2(D) → L2(D) be an operator. We consider the
following problem:

(1.1)
{
−∆u + u + Au = f in D

u = 0 on ∂D
.

Case A = 0 is studied for example in [3].

Definition 1.1. u ∈ H1
0 (D) is called weak solution of the problem (1) if

(1.2)
∫
D

∇u∇v +
∫
D

uv +
∫
D

Au · v =
∫
D

fv , ∀v ∈ H1
0 (D).

In the sequel, we give an existence and uniqueness result of weak solution for problem 1.1, then
we see the conditions to obtain classical solution.

Theorem 1.1. Assume that A : D(A) ⊂ L2(D) → L2(D) is linear, continous and monotone.
Then for every f ∈ L2(D), the problem 1.1 has an unique weak solution denoted u ∈ H1

0 (D).
Moreover, if A is selfadjoint, then u realizes

min
v∈H1

0 (D)

1
2

∫
D

(
|∇v|2 + v2 + Av · v

)
−

∫
D

fv

 .

We will use the following

Theorem 1.2 (Lax-Milgram). Let H be a real Hilbert space and let a : H × H → R be
a bilinear, continuous and coercive form. Then for every f ∈ H ′ there exists an unique u ∈ H
such that

a(u, v) = f(v) , ∀v ∈ H.

Moreover, if a is symmetric, then u realizes

(1.3) min
v∈H

{
1
2
a(v, v)− f(v)

}
.
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For proof, it is used Riesz representation theorem and Picard-Banach theorem (see [3], p.84).

Proof of theorem 1.1. Let us consider the Hilbert space H = H1
0 (D) endowed with the scalar

product

(1.4) (u, v)H1
0

= (u, v)L2 + (∇u,∇v)L2 .

The induced norm is

(1.5) ‖u‖2
H1

0
= ‖u‖2

L2 + ‖∇u‖2
L2 .

Define on H the bilinear form a : H ×H → R,

(1.6) a(u, v) =
∫
D

∇u∇v +
∫
D

uv +
∫
D

Au · v.

We prove that a is continuous and coercive. Indeed,

(1.7) a(u, v) = (∇u,∇v)L2 + (u, v)L2 + (Au, v)L2 ,

or equivalent a(u, v) = (u, v)H1
0

+ (Au, v)L2 . It results

|a(u, v)| ≤ |(u, v)|H1
0

+ |(Au, v)|L2 ≤ ‖u‖H1
0
‖v‖H1

0
+ ‖Au‖L2 ‖v‖L2 ≤

≤ ‖u‖H1
0
‖v‖H1

0
+ c ‖u‖L2 ‖v‖L2 ≤ ‖u‖H1

0
‖v‖H1

0
+ c ‖u‖H1

0
‖v‖H1

0
≤

≤ (c + 1) ‖u‖H1
0
‖v‖H1

0
.

So a(u, v) is continuous (we use that ‖u‖L2 ≤ ‖u‖H1
0
). Further,

a(v, v) = ‖v‖2
H1

0
+ (Av, v)L2 ≥ ‖v‖2

H1
0
.,

thus a is coercive. Let us define f ∈ H ′ by

(1.8) f(v) =
∫
D

fv , ∀v ∈ H.

Now, we can apply Lax-Milgram theorem with the bilinear form a(u, v) given by 1.6 and f ∈ H ′

given by 1.8. Hence there exists an unique element u ∈ H1
0 (D) satisfying

(1.9) a(u, v) = f(v) , ∀v ∈ H1
0 (D),

which is equivalent with 1.2. Finally, u is weak solution of 1.1. If moreover, A is selfadjoint,
then a is symmetric and consequently, relation 1.3 holds . �

Under some conditions, the weak solution of the problem 1.1 is in fact classical solution, as
we can see from the following

Theorem 1.3. Assume that D ⊂ RN is of class C1 and let f ∈ C(D). Let u ∈ H1
0 (D) be a

weak solution of the problem 1.1. If moreover, u ∈ C2(D), then u is classical solution of 1.1.

Proof. From the fact that u ∈ H1
0 (D)∩C(D), it results that u = 0 on ∂D ([3], p.171). But u

is weak solution of 1.1 and H1
0 (D) is dense in L2(D), thus

(1.10)
∫
D

(−∆u + u + Au− f)v = 0 , ∀v ∈ H1
0 (D).
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It folows: −∆u + u + Au− f = 0 a.e. in D. From continuity, it obtains:

(1.11) −∆u + u + Au = f in D,

so u is classical solution of the problem 1.1. �

If change in A with A− I in 1.1, then we obtain another form of the problem 1.1:

(1.12)
{
−∆u + Au = f in D

u = 0 on ∂D
.

We give the following:

Theorem 1.4. Let A be linear, continuous such that A−I is monotone. Then for every f ∈
L2(D), problem 1.12 has an unique solution denoted u ∈ H1

0 (D). Moreover, if A is selfadjoint,
then u realizes

(1.13) min
v∈H1

0 (D)

1
2

∫
D

(|∇v|2 + v ·Av)−
∫
D

fv

 .

The particular case A = I in theorem 1.4 is studied in [3], p.175.
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