JOURNAL OF SCIENCE AND ARTS

LINEAR PERTURBATIONS FOR THE DIRICHLET PROBLEM

CRISTINEL MORTICI

Abstract. In this paper we study a problem of type

$$
\left\{\begin{array}{c}
-\Delta u+u+A u=f \text { in } D \\
u=0 \quad \text { on } \partial D
\end{array}\right.
$$

which generalizes a result from [3], p.175. The results are given in theorem 1.1 and for case with bounded domain of class C^{1}, in theorem 2.2. Remark that these results remains true in case A nonlinear and the above problem can be establish also for variational inequalities ([3], p.118-120). Nonlinear case is studied using the author's results from [5].

Let $D \subset R^{N}$ be open and let $A: D(A) \subset L^{2}(D) \rightarrow L^{2}(D)$ be an operator. We consider the following problem:

$$
\left\{\begin{array}{c}
-\Delta u+u+A u=f \quad \text { in } \quad D \tag{1.1}\\
u=0 \quad \text { on } \quad \partial D
\end{array} .\right.
$$

Case $A=0$ is studied for example in [3].
Definition 1.1. $u \in H_{0}^{1}(D)$ is called weak solution of the problem (1) if

$$
\begin{equation*}
\int_{D} \nabla u \nabla v+\int_{D} u v+\int_{D} A u \cdot v=\int_{D} f v \quad, \quad \forall v \in H_{0}^{1}(D) \tag{1.2}
\end{equation*}
$$

In the sequel, we give an existence and uniqueness result of weak solution for problem 1.1, then we see the conditions to obtain classical solution.

Theorem 1.1. Assume that $A: D(A) \subset L^{2}(D) \rightarrow L^{2}(D)$ is linear, continous and monotone. Then for every $f \in L^{2}(D)$, the problem 1.1 has an unique weak solution denoted $u \in H_{0}^{1}(D)$. Moreover, if A is selfadjoint, then u realizes

$$
\min _{v \in H_{0}^{1}(D)}\left\{\frac{1}{2} \int_{D}\left(|\nabla v|^{2}+v^{2}+A v \cdot v\right)-\int_{D} f v\right\}
$$

We will use the following
Theorem 1.2 (Lax-Milgram). Let H be a real Hilbert space and let $a: H \times H \rightarrow \mathbf{R}$ be a bilinear, continuous and coercive form. Then for every $f \in H^{\prime}$ there exists an unique $u \in H$ such that

$$
a(u, v)=f(v) \quad, \quad \forall v \in H
$$

Moreover, if a is symmetric, then u realizes

$$
\begin{equation*}
\min _{v \in H}\left\{\frac{1}{2} a(v, v)-f(v)\right\} \tag{1.3}
\end{equation*}
$$

For proof, it is used Riesz representation theorem and Picard-Banach theorem (see [3], p.84).
Proof of theorem 1.1. Let us consider the Hilbert space $H=H_{0}^{1}(D)$ endowed with the scalar product

$$
\begin{equation*}
(u, v)_{H_{0}^{1}}=(u, v)_{L^{2}}+(\nabla u, \nabla v)_{L^{2}} \tag{1.4}
\end{equation*}
$$

The induced norm is

$$
\begin{equation*}
\|u\|_{H_{0}^{1}}^{2}=\|u\|_{L^{2}}^{2}+\|\nabla u\|_{L^{2}}^{2} . \tag{1.5}
\end{equation*}
$$

Define on H the bilinear form $a: H \times H \rightarrow \mathbf{R}$,

$$
\begin{equation*}
a(u, v)=\int_{D} \nabla u \nabla v+\int_{D} u v+\int_{D} A u \cdot v . \tag{1.6}
\end{equation*}
$$

We prove that a is continuous and coercive. Indeed,

$$
\begin{equation*}
a(u, v)=(\nabla u, \nabla v)_{L^{2}}+(u, v)_{L^{2}}+(A u, v)_{L^{2}} \tag{1.7}
\end{equation*}
$$

or equivalent $a(u, v)=(u, v)_{H_{0}^{1}}+(A u, v)_{L^{2}}$. It results

$$
\begin{gathered}
|a(u, v)| \leq|(u, v)|_{H_{0}^{1}}+|(A u, v)|_{L^{2}} \leq\|u\|_{H_{0}^{1}}\|v\|_{H_{0}^{1}}+\|A u\|_{L^{2}}\|v\|_{L^{2}} \leq \\
\leq\|u\|_{H_{0}^{1}}\|v\|_{H_{0}^{1}}+c\|u\|_{L^{2}}\|v\|_{L^{2}} \leq\|u\|_{H_{0}^{1}}\|v\|_{H_{0}^{1}}+c\|u\|_{H_{0}^{1}}\|v\|_{H_{0}^{1}} \leq \\
\leq(c+1)\|u\|_{H_{0}^{1}}\|v\|_{H_{0}^{1}} .
\end{gathered}
$$

So $a(u, v)$ is continuous (we use that $\|u\|_{L^{2}} \leq\|u\|_{H_{0}^{1}}$). Further,

$$
a(v, v)=\|v\|_{H_{0}^{1}}^{2}+(A v, v)_{L^{2}} \geq\|v\|_{H_{0}^{1}}^{2}
$$

thus a is coercive. Let us define $f \in H^{\prime}$ by

$$
\begin{equation*}
f(v)=\int_{D} f v \quad, \quad \forall v \in H \tag{1.8}
\end{equation*}
$$

Now, we can apply Lax-Milgram theorem with the bilinear form $a(u, v)$ given by 1.6 and $f \in H^{\prime}$ given by 1.8. Hence there exists an unique element $u \in H_{0}^{1}(D)$ satisfying

$$
\begin{equation*}
a(u, v)=f(v) \quad, \quad \forall v \in H_{0}^{1}(D) \tag{1.9}
\end{equation*}
$$

which is equivalent with 1.2. Finally, u is weak solution of 1.1 . If moreover, A is selfadjoint, then a is symmetric and consequently, relation 1.3 holds .

Under some conditions, the weak solution of the problem 1.1 is in fact classical solution, as we can see from the following

Theorem 1.3. Assume that $D \subset \mathbf{R}^{N}$ is of class C^{1} and let $f \in C(\bar{D})$. Let $u \in H_{0}^{1}(D)$ be a weak solution of the problem 1.1. If moreover, $u \in C^{2}(\bar{D})$, then u is classical solution of 1.1.

Proof. From the fact that $u \in H_{0}^{1}(D) \cap C(\bar{D})$, it results that $u=0$ on ∂D ([3], p.171). But u is weak solution of 1.1 and $H_{0}^{1}(D)$ is dense in $L^{2}(D)$, thus

$$
\begin{equation*}
\int_{D}(-\Delta u+u+A u-f) v=0 \quad, \quad \forall v \in H_{0}^{1}(D) . \tag{1.10}
\end{equation*}
$$

It folows: $-\Delta u+u+A u-f=0$ a.e. in D. From continuity, it obtains:

$$
\begin{equation*}
-\Delta u+u+A u=f \quad \text { in } \quad D, \tag{1.11}
\end{equation*}
$$

so u is classical solution of the problem 1.1.
If change in A with $A-I$ in 1.1, then we obtain another form of the problem 1.1:

$$
\left\{\begin{array}{c}
-\Delta u+A u=f \quad \text { in } \quad D \tag{1.12}\\
u=0 \text { on } \partial D
\end{array} .\right.
$$

We give the following:
Theorem 1.4. Let A be linear, continuous such that $A-I$ is monotone. Then for every $f \in$ $L^{2}(D)$, problem 1.12 has an unique solution denoted $u \in H_{0}^{1}(D)$. Moreover, if A is selfadjoint, then u realizes

$$
\begin{equation*}
\min _{v \in H_{0}^{1}(D)}\left\{\frac{1}{2} \int_{D}\left(|\nabla v|^{2}+v \cdot A v\right)-\int_{D} f v\right\} . \tag{1.13}
\end{equation*}
$$

The particular case $A=I$ in theorem 1.4 is studied in [3], p.175.

References

[1] Amann,H., On the unique solvability of the semilinear operator equations in Hilbert spaces, J.Math. pures et appl., vol.61, 1982, 149-175.
[2] Amann,H., Saddle points and multiple solutions of differential equations. Math. Zeitschr., vol.169, 1979, 127166.
[3] Brezis,H., Analyse Fonctionnelle. Theorie et applications, 1983.
[4] Mazilu,P., Sburlan,S., Metode functionale in rezolvarea ecuatiilor teoriei elasticitatii, Ed.Acad., Bucuresti, 1973.
[5] Mortici, C., Semilinear Equations with Strongly Monotone Nonlinearity, Le Matematiche, LII(1997), vol.II, 387-392.
[6] Mortici,C., Variational methods for the perturbed Laplace problem. A VI-a Conf.de Analiza Neliniara,Constanta,1997.
[7] Pascali,D., Sburlan,S., Nonlinear mappings of monotone type, Sijthoff and Noordhoff, Intern.Publ., Aplhen aan den Rijn, 1978.

Department of Mathematics, Valahia University of Târgovişte,
Bd. Unirit 18-24, Târgovişte, Romania
E-mail address: cmortici@valahia.ro

