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A MULTIFACTORIAL MODEL

GABRIEL-LUCIAN NEPOTU

Abstract. The multifactorial models refer to the dependence of a bond on several parameters,
unlike the unifactorial ones depending on the interest rate only. We suppose that the value P
of a bond is dependent on two random factors: the interest rate r and the volatility σ. Our
purpose is to find a procedure to offer the bond value at a specific moment in time. A numerical
method is indicated in this respect.
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1. Introduction

A bond is a long term contract between two persons. The emitent has the obligation to pay
to the holder at the maturity time a nominal value and the holder pays at the moment when
the contract is activated a certain premium.

The bond is a financial instrument used to enhance the capital and its life duration is about
ten years or more. On a short range the rate can be consider deterministic, but in the long run,
it has a stochastic evolution.

The differential equation whose solution is the bond value P is:
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∂t
+
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b2 · ∂2P

∂r2
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∂P

∂r
− rP = 0, t < T,

where P (T ;T ) = 1 is the final condition, λ is the risk price supposed constant, and the stochastic
dynamic of the interest rate is:

dr = a dt + bdB,
where a, b are the instant expectation and the instant variation, and B is a standard brownian
motion; r is the interest rate and T denotes the maturity time.

2. A Multifactorial Model

The stochastic differential equations are:{
dσ = α dt + βdB,
dr = γ dt + σdB,

where r is the interest rate, σ is the stochastic volatility, α, β, γ are constants and B is the above
- mentioned brownian motion; t denotes the actual moment of time, t¡T , with T the maturity
moment.

Use the bidimensional Itô formula, where P = P (t, r, σ) it follows that:
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The coefficient of dt is denoted by µP P and that of dB is σP P, where µP and σP are the
expectation P respectively the variation of the stochastic process P .

71



JOURNAL OF SCIENCE AND ARTS

Since:

λ =
µP − r

σP
,

with λ denoting the risk price, the following equation holds:
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∂σ ∂r
− rP = 0,

where σ, r ∈ (0, 1), t ∈ [0, T ], α, β, γ, λ - constants, α, β, γ, λ 6= 0, with the final
condition P (T, r, σ) = 1.

This equation will be solved numerically using the explicit scheme algorithm in the next
section.

3. The Finite Difference Method. The Explicit Scheme

For a certain real function u = u(x, y, t) let’s consider the equation:

∂u

∂t
= A · ∂2u

∂x2
+ 2B · ∂2u

∂x∂y
+ C · ∂2u

∂y2
.

In order to associate this equation to a finite difference scheme, the existence domain of the
solution is covered by a rectangular network of lines parallel to the coordinate axes, with the
paces h1 and h2 on the spatial axes and p the pace for the temporal coordinates.

The points of the network (X, Y, T ), are given by:
X = jh1, Y = kh2, T = lp, j, k, l ∈ Z+.
With the following notations:

U l
j,k = U(j h1, k h2,lp),

Φl
j,k =

A

h2
1

(U l
j+1,k − 2U l

j,k + U l
j−1,k)

+
B

2h1h2
(U l

j+1,k+1 − U l
j−1,k+1 − U l

j+1,k−1 + U l
j−1,k−1)

+
C

h2
2

(U l
j,k+1 − 2U l

j,k + U l
j,k−1).

The finite difference scheme is:

U l+1
j,k − U l

j,k

p
= θ · Φl+1

j,k + (1− θ) · Φl
j,k, j = 0, J, k = 0,K, l = 0, J, θ ∈ [0, 1].

For θ = 0 we have an explicit scheme that is stable for p very small.

The following algorithm in MATHCAD offers a numerical solution for the equation at the
end of section 2, using the explicit scheme:

α := 0.5 β := 0.5 γ := 0.5 λ := 0.5

f(r, s, u, ur, us, u2r, urs, u2s) := r · u + (λ · s− γ) · ur + (λ · β − α) · us−

−0.5 · β2 · u2s− β · s · urs− 0.5s2 · u2r

n := 10 r0 := 0 rf := 1 s0 := 0 sf := 1 T := 1 M := 10

hr : =
rf − r0

n
hr : =

sf − s0
n

τ : =
T

M
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sol := dim← 2 ·M + n + 1
for i ∈ 0..2 ·M + n

for j ∈ 0..2 ·M + n
wi,j ← 1

for k ∈ 1..M
t← T − (k − 1) · τ
v ← submatrix[w, 0, dim− 1, (k − 1) · dim, k · dim− 1]
for i ∈ 0..2 ·M + n− 2 · k

r ← r0 + (i−M + k) · hr
for j ∈ 0..2 ·M + n− 2 · k

s← s0 + (j −M + k) · hs
u← vi+1,j+1

ur ← vi+2, j+1−vi, j+1

2·hr

us← vi+1, j+2−vi+1, j

2·hs

u2r ← vi+2, j+1−2·vi+1, j+1+vi, j+1

hr2

urs← vi+2, j+2+vi, j−vi+2, j−vi, j+2

4·hr·hs

u2s← vi+1, j+2−vi+1, j+1+vi+1, j

hs2

zi,j ← vi+1,j+1 − τ · f(r, s, u, ur, us, u2r, urs, u2s)
for i ∈ 2 ·M + n− 2 · k + 1..2 ·M + n

for j ∈ 2 ·M + n− 2 · k + 1..2 ·M + n
zi,j ← 0

w ← argument(w, z)
w

nivel(k) := dim← 2 ·M + n + 1
d← 2 ·M + n− 2 · k + 1
submatrix[submatrix[sol, 0, dim− 1, k · dim, (k + 1) · dim− 1], 0, d− 1, 0, d− 1]
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