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A MULTIFACTORIAL MODEL

GABRIEL-LUCIAN NEPOTU

ABSTRACT. The multifactorial models refer to the dependence of a bond on several parameters,
unlike the unifactorial ones depending on the interest rate only. We suppose that the value P
of a bond is dependent on two random factors: the interest rate r and the volatility o. Our
purpose is to find a procedure to offer the bond value at a specific moment in time. A numerical
method is indicated in this respect.
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1. Introduction

A bond is a long term contract between two persons. The emitent has the obligation to pay
to the holder at the maturity time a nominal value and the holder pays at the moment when
the contract is activated a certain premium.

The bond is a financial instrument used to enhance the capital and its life duration is about
ten years or more. On a short range the rate can be consider deterministic, but in the long run,
it has a stochastic evolution.

The differential equation whose solution is the bond value P is:
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where P(T;T) = 1 is the final condition, X is the risk price supposed constant, and the stochastic
dynamic of the interest rate is:

dr =a dt + bdB,

where a, b are the instant expectation and the instant variation, and B is a standard brownian
motion; r is the interest rate and T denotes the maturity time.

2. A Multifactorial Model

The stochastic differential equations are:

do = adt + (dB,
dr =~dt+ odB,

where r is the interest rate, ¢ is the stochastic volatility, «, 3, v are constants and B is the above
- mentioned brownian motion; ¢ denotes the actual moment of time, ¢{T’, with 7" the maturity
moment.

Use the bidimensional It6 formula, where P = P(t,r, o) it follows that:
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The coefficient of dt is denoted by upP and that of dB is opP, where up and op are the
expectation P respectively the variation of the stochastic process P.
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Since:
a=HrTr
ap
with A\ denoting the risk price, the following equation holds:
opP orP 1 8 P 1 32P a2P
(a—)ﬁ)—%—(w Ao)— o fﬁg 202 . ﬁa —T’P:O,

€ [0, T], o, B, 7, A - constants, «, ﬂ, v, A

ot

where o, r € (0, 1), ¢

condition P(T,r, o) = 1.
This equation will be solved numerically using the explicit scheme algorithm in the next

7é 0, with the final

section.

3. The Finite Difference Method. The Explicit Scheme

For a certain real function u = u(z,y,t) let’s consider the equation:
0 0? 0? 0?
oA TS 42B O
ot Ox? Oxdy Oy?
In order to associate this equation to a finite difference scheme, the existence domain of the
solution is covered by a rectangular network of lines parallel to the coordinate axes, with the
paces h1 and ho on the spatial axes and p the pace for the temporal coordinates.
The points of the network (X,Y,T), are given by:
X =jh1,Y =khy, T =1Ip, j, k,l € Z,.
With the following notations:

Uj = U(j b1, k ha,lp),

A
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The finite difference scheme is:
Uttt —yl
b g ol (1) - @ly, j=0.J, k=0,K, 1=0,J, 0€0,1].

p
For 8 = 0 we have an explicit scheme that is stable for p very small.

The following algorithm in MATHCAD offers a numerical solution for the equation at the

end of section 2, using the explicit scheme:
a:=05 f:=05 ~v:=05 A:=0.5

flrys,u,ur,us, u2r,urs,u2s) :==r-u+ A-s—7)-ur+ A5 —a)-us—

—0.5-3% - u2s — B -s-urs —0.55> - u2r
s0:=0 sf:=1 T:=1 M:=10
rf—r0 sf—s0

T
hr:= hr .= =
" n " n T M

n:=10 10:=0 «rf:=1
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sol :==|dim—2-M+n+1
forie0.2-M-+n

for 7€0.2-M+n

wij <1

forkel.M
t—T—(k—-1)-7
v «— submatrizjw,0,dim — 1, (k — 1) - dim, k - dim — 1]
forie0.2-M4+n—-2-k
r—7r0+(Gi—M+Ek)- hr
forje0.2-M4+n—-2-k
s§—s0+(j—M+Ek)-hs
U = Vit1,j+1
ur — Vit2, gJ;h;Uz Jj+1

Vitl, j+2—Vit1, j
o Yidl, j427ViH, G
us 2-hs

Vig2, j41—2Vit1, 414V, j41
2

uU2r — o
Vit2, j4+2+Vi, j—Vit2, j=Vi, j4+2

urs < 4-hr-hs
Vitl, j4+2—Vitl, jH1FVi41, g
hs?
Zij < Vigl,j41 — T f(r, s, u, ur, us, u2r, urs, u2s)
forie2-M+n—-2-k+1.2-M+n
forje2- M+n—-2-k+1.2-M+n

—0

u2s «—

i
w «— argument(w, z)

w

nivel(k) :== | dim «— 2-M +n +1

d—2-M+n—2-k+1

submatriz[submatriz[sol,0,dim — 1,k - dim, (k + 1) - dim — 1],0,d — 1,0,d — 1]
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