JOURNAL OF SCIENCE AND ARTS

SOME GRONWALL TYPE INEQUALITIES WITH APPLICATION IN DATA DEPENDENCE FOR FUNCTIONAL DIFFERENTIAL EQUATION

OLARU ION MARIAN

ABSTRACT. In this paper we study, with abstract Gronwall Lemma, the following inequality

$$x(t)e^{\omega t} \le A + B \int_{0}^{t} e^{\omega s} x(\theta s) ds$$

where $A, B, \omega > 0, x \in C([0, T], (R)^*_+), \theta \in (0, 1)$. In the second part, we present the application of this for the following functional differential equation:

$$x'(t) - Ax(t) = B(t, x(\theta t))),$$

where

- $B \in C^1([0, +\infty) \times \mathbb{R}^n).$

- $A \in M_{n^2}(R)$ is a matrix with eigenvalues having negative real part.

1. INTRODUCTION

The class of the Picard operators was introduced by Profesor I.A. Rus. The notions and results are in I.A.Rus [6], [8], [7], [9].

Let (X, d) be a metric space and $A : X \to X$ an operator. We shall use the following notations: $F_A := \{x \in X \mid Ax = x\}$ the fixed points set of A. $I(A) := \{Y \in P(X) \mid A(Y) \subset Y\}$ the family of the nonempty invariant subsets of A.

 $A^{n+1} = A \circ A^n, A^0 = 1_X, A^1 = A, n \in N.$

Definition 1.1. (I.A.Rus [8]) An operator A is weakly Picard operator (WPO) if the sequence $(A^{n}(x))_{n \in N}$

converges, for all $x \in X$ and the limit (which depend on x) is a fixed point of A.

Definition 1.2. (I.A.Rus [8]) If the operator A is WPO and $F_A = \{x^*\}$ then by definition A is Picard operator.

Lemma 1.1. (I.A. Rus [11])Let be (X, d, \leq) an ordered metrical space and $A, B : X \longrightarrow X$ two operators. We suppose that :

(i) A and B Picard operators;

(ii) A is increasing;

iii $A \leq B$.

Then $x \leq A(x)$ imply $x \leq x_B^*$.

JOURNAL OF SCIENCE AND ARTS

2. Main Results

Proposition 2.1. Fie $A, B, \omega > 0, \theta \in (0, 1)$ and let $x \in C([0, T], \mathbb{R}_+)$ be a solution for the following inequality

$$x(t)e^{\omega t} \le A + B \int_{0}^{t} e^{\omega s} x(\theta s) ds.$$

Then

$$x(t) \le Ae^{\frac{B}{\theta}t}, \ (\forall)t \in [0,T].$$

Proof: On $C([0,T], \mathbb{R}_+)$, we define the following norm

$$\begin{aligned} \|x\|_{\tau} &= \max_{t \in [0,T]} |x(t)| e^{-\tau t}, \ \tau > 0 \\ x(t) &\leq A e^{-\omega t} + B \int_{0}^{t} e^{-\omega (t-s)} x(\theta s) ds \leq A + B \int_{0}^{t} e^{-\omega (t-s)} x(\theta s) ds \leq A + B \int_{0}^{t} e^{-\omega (t-s)} x(\theta s) ds \leq A + B \int_{0}^{t} x(\theta s) ds = A + \frac{B}{\theta} \int_{0}^{\theta t} x(u) du \leq A + \frac{B}{\theta} \int_{0}^{t} x(u) du. \end{aligned}$$

We define

$$M, N : C([0, T], \mathbb{R}_{+}) \longrightarrow C([0, T], \mathbb{R}_{+})$$
$$M(x)(t) = Ae^{-\omega t} + B \int_{0}^{t} e^{-\omega(t-s)} x(\theta s) ds$$
$$N(x)(t) = A + \frac{B}{\theta} \int_{0}^{t} x(u) du.$$

We remark that $x \leq M(x) \leq N(x)$, M is increasing and for all $x, y \in C([0,T], \mathbb{R}_+)$ we have that

$$|M(x)(t) - M(y)(t)| \le B \int_{0}^{t} |x(\theta s) - y(\theta s)| ds \le$$
$$\le B ||x - y||_{\tau} \int_{0}^{t} e^{\tau \theta s} ds \le \frac{B}{\tau} ||x - y||_{\tau} e^{\tau t}.$$

Then

$$||M(x) - M(y)||_{\tau} \le \frac{B}{\tau} ||x - y||_{\tau}.$$

We choose $\tau > 0$ such that $\frac{B}{\tau} < 1$, and we obtain that M is the Picard operator. Analog we show that N is a Picard operator. The unique fixed point of operator N is $\overline{x}(t) = Ae^{\frac{B}{\tau}t}$. Q.E.D Next we consider the following Cauchy problem

(1)
$$x'(t) - Ax(t) = B(t, x(\theta t)), t \in [0, T].$$

where

 $(H_1) \ B \in C^1([0, +\infty) \times R^n).$

 (H_2) $A \in M_{n^2}(R)$ is a matrix with eigenvalues having negative real part.

 (H_3) There exists $L_B > 0$ such that

$$\|\frac{\partial B}{\partial u_i}(t,u)\|_{R^n} \le L_B, (\forall)t \ge t_0, (\forall)u_i \in R.$$

The problem (1)+(2) is equivalent with

(3)
$$x(t) = e^{tA}x_0 + \int_0^t e^{(t-s)A}B(s, x(g(s)))ds,$$

Proposition 2.2. We suppose that the hypothesis (H_1) , (H_2) , (H_3) are satisfied. Then

- (a) The Cauchy problem (1)+(2) has a unique solution $x(\cdot, 0, x_0)$.
- (b) If, there exists $\eta > 0$ such that $||x_0 y_0||_{\mathbb{R}^n} \leq \eta$, then

$$||x(t,0,x_0) - x(t,0,y_0)||_{\mathbb{R}^n} \le M\eta e^{\frac{M}{\theta}T}$$

Proof:

Let $L: C([0,T],\mathbb{R}^n) \to C([0,T],\mathbb{R}^n)$ be defined as follows:

$$L(x)(t) = e^{tA}x_0 + \int_0^t e^{(t-s)A}B(s, x(g(s)))ds.$$

We have that

$$||L(x) - L(y)||_{\tau} \le \frac{L_B}{\tau\theta} ||x - y||_{\tau}$$

It follows that L is a Picard operator. From here we obtain (a).

We note by $h(t) = ||x(t, 0, x_0) - x(t, 0, y_0)||_{\mathbb{R}^n} \in C([0, T], \mathbb{R}_+)$. Using the structure theorem of the matrix A we obtain that

$$h(t) \le M\eta + M \int_{0}^{t} e^{\omega s} h(\theta s) ds$$

From Proposition 2.2 we have that

$$h(t) \le M\eta e^{\frac{M}{\theta}t} \le M\eta e^{\frac{M}{\theta}T}$$

References

- [1] D Bainov, P. Simeonov, Integral inequalities and applications, 1992, Kluwer Academic Publishers.
- [2] B.G. Pachpate, Some inequalities betwen functions and their derivatives, Acta Ciencie Indica, Vol. 7(M), No 4(1981), pp223-227.
- [3] B.G.Pachpate, On some integral inequalities similar to Bellman-Bihari inequalities, J.Math. Anal. Appl. 49(1975), pp 794-802.
- [4] B.G.Pachpate, On some fundamental integrodifferential and integral inequalities, An-Sti. Univ., Al. I Cuza Iasi, 23, 1977, pp 77-86.
- [5] B.G. Pachpate, A some new inequalities related to certain inequalities in the theory of differential equations, J. Math.An.Appl., 189(1995), pp 128-144.
- [6] I.A.Rus, Generalized contractions, Seminar on fixed point theory, No 3, 1983, 1-130.
- [7] I.A.Rus, Ecuații diferențiale, Ecuații integrale, Sisteme Dinamice, Transilvania Press. Cluj-Napoca, 1996.
- [8] I. A. Rus, Weakly Picard operators and applications, Seminar on fixed point theory Cluj-Napoca, vol. 2, 2001,41-58.
- [9] I.A.Rus, Picard operators and applications, Scintae Math., Japonica, 58 No1(2003), pp 191-219.
- [10] I.A.Rus, An abstract point of view for some integral equations from applied mathematics, Proc. Int Conf. on Anal.And Numerical Computation, Univ.of Timişoara, 1997, pp 256-270.

JOURNAL OF SCIENCE AND ARTS

[11] I.A. Rus, Fixed points, upper and lower fixed points: abstract Gronwall lemmas, Carpathian Journal of Mathematics, vol 20, 2004, pp 125-134.

Mathematics Department, University Lucian Blaga, str. Dr. I.Ratiu, No.5-7, 550024, Sibiu, Romania E-mail address: olaruim@yahoo.com