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SOME GRONWALL TYPE INEQUALITIES WITH APPLICATION IN DATA
DEPENDENCE FOR FUNCTIONAL DIFFERENTIAL EQUATION

OLARU ION MARIAN

Abstract. In this paper we study, with abstract Gronwall Lemma, the following inequality

x(t)eωt ≤ A + B

tZ

0

eωsx(θs)ds,

where A, B, ω > 0, x ∈ C([0, T ], (R)∗+), θ ∈ (0, 1). In the second part, we present the application
of this for the following functional differential equation:

x′(t)−Ax(t) = B(t, x(θt))),

where
- B ∈ C1([0, +∞)×Rn).
- A ∈Mn2(R) is a matrix with eigenvalues having negative real part.

1. Introduction

The class of the Picard operators was introduced by Profesor I.A. Rus.The notions and results
are in I.A.Rus [6], [8], [7], [9].

Let (X, d) be a metric space and A : X → X an operator.We shall use the following notations:
FA := {x ∈ X | Ax = x} the fixed points set of A.
I(A) := {Y ∈ P (X) | A(Y ) ⊂ Y } the family of the nonempty invariant subsets of A.
An+1 = A ◦An, A0 = 1X , A1 = A,n ∈ N.

Definition 1.1. (I.A.Rus [8]) An operator A is weakly Picard operator (WPO) if the sequence

(An(x))n∈N

converges , for all x ∈ X and the limit (which depend on x ) is a fixed point of A.

Definition 1.2. (I.A.Rus [8]) If the operator A is WPO and FA = {x∗} then by definition A is
Picard operator.

Lemma 1.1. (I.A. Rus [11])Let be (X, d,≤) an ordered metrical space and A,B : X −→ X two
operators. We suppose that :

(i) A and B Picard operators;
(ii) A is increasing;
iii A ≤ B.

Then x ≤ A(x) imply x ≤ x∗B.
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2. Main Results

Proposition 2.1. Fie A,B, ω > 0, θ ∈ (0, 1) and let x ∈ C([0, T ], R+) be a solution for the
following inequality

x(t)eωt ≤ A + B

t∫
0

eωsx(θs)ds.

Then
x(t) ≤ Ae

B
θ

t, (∀)t ∈ [0, T ].

Proof: On C([0, T ], R+), we define the following norm

‖x‖τ = max
t∈[0,T ]

|x(t)|e−τt, τ > 0

x(t) ≤ Ae−ωt + B

t∫
0

e−ω(t−s)x(θs)ds ≤ A + B

t∫
0

e−ω(t−s)x(θs)ds ≤

≤ A + B

t∫
0

x(θs)ds = A +
B

θ

θt∫
0

x(u)du ≤ A +
B

θ

t∫
0

x(u)du.

We define
M,N : C([0, T ], R+) −→ C([0, T ], R+)

M(x)(t) = Ae−ωt + B

t∫
0

e−ω(t−s)x(θs)ds

N(x)(t) = A +
B

θ

t∫
0

x(u)du.

We remark that x ≤ M(x) ≤ N(x), M is increasing and for all x, y ∈ C([0, T ], R+) we have that

|M(x)(t)−M(y)(t)| ≤ B

t∫
0

|x(θs)− y(θs)|ds ≤

≤ B‖x− y‖τ

t∫
0

eτθsds ≤ B

τ
‖x− y‖τe

τt.

Then
‖M(x)−M(y)‖τ ≤

B

τ
‖x− y‖τ .

We choose τ > 0 such that B
τ < 1, and we obtain that M is the Picard operator. Analog we

show that N is a Picard operator. The unique fixed point of operator N is x(t) = Ae
B
τ

t. Q.E.D
Next we consider the following Cauchy problem

(1) x′(t)−Ax(t) = B(t, x(θt)), t ∈ [0, T ].

(2) x(0) = x0.

where
(H1) B ∈ C1([0,+∞)×Rn).
(H2) A ∈ Mn2(R) is a matrix with eigenvalues having negative real part.
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(H3) There exists LB > 0 such that

‖∂B

∂ui
(t, u)‖Rn ≤ LB, (∀)t ≥ t0, (∀)ui ∈ R.

The problem (1)+(2) is equivalent with

(3) x(t) = etAx0 +

t∫
0

e(t−s)AB(s, x(g(s)))ds,

Proposition 2.2. We suppose that the hypothesis (H1), (H2), (H3) are satisfied. Then
(a) The Cauchy problem (1)+(2) has a unique solution x(·, 0, x0).
(b) If, there exists η > 0 such that ‖x0 − y0‖Rn ≤ η, then

‖x(t, 0, x0)− x(t, 0, y0)‖Rn ≤ Mηe
M
θ

T

Proof:
Let L : C([0, T ], Rn) → C([0, T ], Rn) be defined as follows:

L(x)(t) = etAx0 +

t∫
0

e(t−s)AB(s, x(g(s)))ds.

We have that

‖L(x)− L(y)‖τ ≤
LB

τθ
‖x− y‖τ

It follows that L is a Picard operator. From here we obtain (a).
We note by h(t) = ‖x(t, 0, x0)− x(t, 0, y0)‖Rn ∈ C([0, T ], R+). Using the structure theorem of

the matrix A we obtain that

h(t) ≤ Mη + M

t∫
0

eωsh(θs)ds.

From Proposition 2.2 we have that

h(t) ≤ Mηe
M
θ

t ≤ Mηe
M
θ

T
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