SOME GRONWALL TYPE INEQUALITIES WITH APPLICATION IN DATA DEPENDENCE FOR FUNCTIONAL DIFFERENTIAL EQUATION

OLARU ION MARIAN

Abstract. In this paper we study, with abstract Gronwall Lemma, the following inequality

$$
x(t) e^{\omega t} \leq A+B \int_{0}^{t} e^{\omega s} x(\theta s) d s
$$

where $A, B, \omega>0, x \in C\left([0, T],(R)_{+}^{*}\right), \theta \in(0,1)$. In the second part, we present the application of this for the following functional differential equation:

$$
\left.x^{\prime}(t)-A x(t)=B(t, x(\theta t))\right)
$$

where

- $B \in C^{1}\left([0,+\infty) \times R^{n}\right)$.
- $A \in M_{n^{2}}(R)$ is a matrix with eigenvalues having negative real part.

1. Introduction

The class of the Picard operators was introduced by Profesor I.A. Rus.The notions and results are in I.A.Rus [6], [8], [7], [9].

Let (X, d) be a metric space and $A: X \rightarrow X$ an operator. We shall use the following notations: $F_{A}:=\{x \in X \mid A x=x\}$ the fixed points set of A.
$I(A):=\{Y \in P(X) \mid A(Y) \subset Y\}$ the family of the nonempty invariant subsets of A. $A^{n+1}=A \circ A^{n}, A^{0}=1_{X}, A^{1}=A, n \in N$.

Definition 1.1. (I.A.Rus [8]) An operator A is weakly Picard operator (WPO) if the sequence

$$
\left(A^{n}(x)\right)_{n \in N}
$$

converges, for all $x \in X$ and the limit (which depend on x) is a fixed point of A.
Definition 1.2. (I.A.Rus [8]) If the operator A is WPO and $F_{A}=\left\{x^{*}\right\}$ then by definition A is Picard operator.

Lemma 1.1. (I.A. Rus [11])Let be (X, d, \leq) an ordered metrical space and $A, B: X \longrightarrow X$ two operators. We suppose that :
(i) A and B Picard operators;
(ii) A is increasing;
iii $A \leq B$.
Then $x \leq A(x)$ imply $x \leq x_{B}^{*}$.

JOURNAL OF SCIENCE AND ARTS

2. Main Results

Proposition 2.1. Fie $A, B, \omega>0, \theta \in(0,1)$ and let $x \in C\left([0, T], \mathbb{R}_{+}\right)$be a solution for the following inequality

$$
x(t) e^{\omega t} \leq A+B \int_{0}^{t} e^{\omega s} x(\theta s) d s
$$

Then

$$
x(t) \leq A e^{\frac{B}{\theta} t},(\forall) t \in[0, T] .
$$

Proof: On $C\left([0, T], \mathbb{R}_{+}\right)$, we define the following norm

$$
\begin{gathered}
\|x\|_{\tau}=\max _{t \in[0, T]}|x(t)| e^{-\tau t}, \tau>0 \\
x(t) \leq A e^{-\omega t}+B \int_{0}^{t} e^{-\omega(t-s)} x(\theta s) d s \leq A+B \int_{0}^{t} e^{-\omega(t-s)} x(\theta s) d s \leq \\
\leq A+B \int_{0}^{t} x(\theta s) d s=A+\frac{B}{\theta} \int_{0}^{\theta t} x(u) d u \leq A+\frac{B}{\theta} \int_{0}^{t} x(u) d u .
\end{gathered}
$$

We define

$$
\begin{gathered}
M, N: C\left([0, T], \mathbb{R}_{+}\right) \longrightarrow C\left([0, T], \mathbb{R}_{+}\right) \\
M(x)(t)=A e^{-\omega t}+B \int_{0}^{t} e^{-\omega(t-s)} x(\theta s) d s \\
N(x)(t)=A+\frac{B}{\theta} \int_{0}^{t} x(u) d u .
\end{gathered}
$$

We remark that $x \leq M(x) \leq N(x), M$ is increasing and for all $x, y \in C\left([0, T], \mathbb{R}_{+}\right)$we have that

$$
\begin{aligned}
& |M(x)(t)-M(y)(t)| \leq B \int_{0}^{t}|x(\theta s)-y(\theta s)| d s \leq \\
& \quad \leq B\|x-y\|_{\tau} \int_{0}^{t} e^{\tau \theta s} d s \leq \frac{B}{\tau}\|x-y\|_{\tau} e^{\tau t} .
\end{aligned}
$$

Then

$$
\|M(x)-M(y)\|_{\tau} \leq \frac{B}{\tau}\|x-y\|_{\tau} .
$$

We choose $\tau>0$ such that $\frac{B}{\tau}<1$, and we obtain that M is the Picard operator. Analog we show that N is a Picard operator. The unique fixed point of operator N is $\bar{x}(t)=A e^{\frac{B}{\tau} t}$. Q.E.D

Next we consider the following Cauchy problem

$$
\begin{gather*}
x^{\prime}(t)-A x(t)=B(t, x(\theta t)), t \in[0, T] . \tag{1}\\
x(0)=x_{0} . \tag{2}
\end{gather*}
$$

where
$\left(H_{1}\right) B \in C^{1}\left([0,+\infty) \times R^{n}\right)$.
$\left(H_{2}\right) \quad A \in M_{n^{2}}(R)$ is a matrix with eigenvalues having negative real part.
$\left(H_{3}\right)$ There exists $L_{B}>0$ such that

$$
\left\|\frac{\partial B}{\partial u_{i}}(t, u)\right\|_{R^{n}} \leq L_{B},(\forall) t \geq t_{0},(\forall) u_{i} \in R .
$$

The problem $(1)+(2)$ is equivalent with

$$
\begin{equation*}
x(t)=e^{t A} x_{0}+\int_{0}^{t} e^{(t-s) A} B(s, x(g(s))) d s \tag{3}
\end{equation*}
$$

Proposition 2.2. We suppose that the hypothesis $\left(H_{1}\right),\left(H_{2}\right),\left(H_{3}\right)$ are satisfied. Then
(a) The Cauchy problem (1)+(2) has a unique solution $x\left(\cdot, 0, x_{0}\right)$.
(b) If, there exists $\eta>0$ such that $\left\|x_{0}-y_{0}\right\|_{\mathbb{R}^{n}} \leq \eta$, then

$$
\left\|x\left(t, 0, x_{0}\right)-x\left(t, 0, y_{0}\right)\right\|_{\mathbb{R}^{n}} \leq M \eta e^{\frac{M}{\theta} T}
$$

Proof:

Let $L: C\left([0, T], \mathbb{R}^{n}\right) \rightarrow C\left([0, T], \mathbb{R}^{n}\right)$ be defined as follows:

$$
L(x)(t)=e^{t A} x_{0}+\int_{0}^{t} e^{(t-s) A} B(s, x(g(s))) d s
$$

We have that

$$
\|L(x)-L(y)\|_{\tau} \leq \frac{L_{B}}{\tau \theta}\|x-y\|_{\tau}
$$

It follows that L is a Picard operator. From here we obtain (a).
We note by $h(t)=\left\|x\left(t, 0, x_{0}\right)-x\left(t, 0, y_{0}\right)\right\|_{\mathbb{R}^{n}} \in C\left([0, T], \mathbb{R}_{+}\right)$. Using the structure theorem of the matrix A we obtain that

$$
h(t) \leq M \eta+M \int_{0}^{t} e^{\omega s} h(\theta s) d s
$$

From Proposition 2.2 we have that

$$
h(t) \leq M \eta e^{\frac{M}{\theta} t} \leq M \eta e^{\frac{M}{\theta} T}
$$

References

[1] D Bainov, P. Simeonov, Integral inequalities and applications, 1992, Kluwer Academic Publishers.
[2] B.G. Pachpate, Some inequalities betwen functions and their derivatives, Acta Ciencie Indica, Vol. 7(M), No 4(1981), pp223-227.
[3] B.G.Pachpate, On some integral inequalities similar to Bellman-Bihari inequalities, J.Math. Anal. Appl. 49(1975), pp 794-802.
[4] B.G.Pachpate, On some fundamental integrodifferential and integral inequalities, An-Sti. Univ., Al. I Cuza Iasi, 23, 1977, pp 77-86.
[5] B.G. Pachpate, A some new inequalities related to certain inequalities in the theory of differential equations, J. Math.An.Appl., 189(1995), pp 128-144.
[6] I.A.Rus, Generalized contractions, Seminar on fixed point theory,No 3,1983,1-130.
[7] I.A.Rus, Ecuaţii diferenţiale, Ecuaţii integrale, Sisteme Dinamice, Transilvania Press. Cluj-Napoca, 1996.
[8] I. A. Rus, Weakly Picard operators and applications, Seminar on fixed point theory Cluj-Napoca, vol. 2, 2001,41-58.
[9] I.A.Rus, Picard operators and applications, Scintae Math., Japonica, 58 No1(2003), pp 191-219.
[10] I.A.Rus, An abstract point of view for some integral equations from applied mathematics, Proc. Int Conf. on Anal.And Numerical Computation, Univ.of Timişoara, 1997, pp 256-270.

JOURNAL OF SCIENCE AND ARTS

[11] I.A. Rus, Fixed points, upper and lower fixed points: abstract Gronwall lemmas, Carpathian Journal of Mathematics, vol 20, 2004, pp 125-134.

Mathematics Department, University Lucian Blaga, str. Dr. I.Ratiu, No.5-7, 550024, Sibiu, Romania
E-mail address: olaruim@yahoo.com

