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SOLVING THE SADDLE-POINT PROBLEM FOR THE QUASISTATIC
CONTACT PROBLEMS

NICOLAE POP

Abstract. The paper is concerned with the numerical solution of the quasi-variational inequal-
ity modelling a contact problem with Coulomb friction. After discretization of the problem by
mixed finite elements and with Lagrangian formulation of the problem by choosing appropriate
multipliers, the duality approach is improved by splitting the normal and tangential stresses.
The novelty of our approach in the present paper consists in the splitting of the normal stress and
tangential stress, which leads to a better convergence of the solution, due to a better conditioned
stiffness matrix. This better conditioned matrix is based on the fact that the obtained diagonal
blocks matrices, contain coefficients of the same size order. For the saddle point formulation of
the problem, using static condensation, we obtain a quadratic programming problem.
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1. Classical and variational formulation

In this paper we study a mathematical model of frictional quasistatic contact between a
deformable body under consideration is assumed to be elastic with a linear elasticity operator
and a foundation. The mathematical model consists in a hemivariational inequality which
involves the Clarke subdifferential of a locally Lipschitz functional, (see [20]). The first step in
the sequence of the approximations is the penalty method for to replace the unilateral contact
conditions by a nonlinear boundary condition dependent on the small parameter. The second
step is the regularization method for the approximation of the module function, with a convex
function . Let Ω ⊂ Rd, d = 2 or 3, the domain occupied by a linear elastic body with a
Lipschitz boundary Γ. Let Γ1,Γ2 and ΓC be three open disjoint parts of Γ such that Γ =
Γ1 ∪ Γ2 ∪ ΓC , Γ1 ∩ ΓC = ∅ and mes (Γ1) > 0. We assume that the body is subjected to
volume forces of density fff ∈ (L2(Ω))d, to surface traction of density hhh ∈ (L2(Γ2))d and is
held fixed on Γ1 . The ΓC denotes a contact part of boundary where unilateral contact and
Coulomb friction condition between Ω and perfectly rigid foundation are considered. We denote

by uuu = (u1, . . . , ud) the displacement field, εεε = (εij(u)) =
(

1
2

(ui,j + uj,i)
)

the strain tensor

and σσσ = (σij(u)) = (aijklεkl(u)) the stress tensor with the usual summation convention, where
i, j, k, l = 1, . . . , d. For the normal and tangential components of the displacement vector and
stress vector, we use the following notation: uN = ui · ni, uuuT = uuu − uuuN · n, σσσN = σσσijuinj ,
(σσσT )i = σσσijnj − σσσN · ni, where n = (ni) is the outward unit normal vector to Γ.

We denote by g ∈ C(Γ̄C), g ≥ 0 the initial gap between the body and the rigid foundation
and lets us denote by fff and hhh the density of body and traction forces, respectively. We assume
that aijkl ∈ L∞(Ω), l ≤ i, j, k, l ≤ d, with usual condition of symmetry and elasticity, that is

aijkl = ajikl = aklij , 1 ≤ i, j, k, l ≤ d,

and ∃ m0 > 0, ∀ ξ = (ξij) ∈ Rd2
, ξij = ξji, 1 ≤ i, j ≤ d, aijkl ξij ξkl ≥ m0|ξ|2 .

In this conditions, the fourth-order tensor aaa = (aijkl) is invertible a.e., on Ω and if we denote
its inverse by bbb = (bijkl), we have εεεij(uuu)) = (bijklσkl(uuu)), i, j, k, l = 1, . . . , d.
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The classical contact problem with dry friction in elasticity, in the particular case, is with the
normal stress σN (u) and ΓC is assumed known and considered as obeying the normal compliance
law, is the following

Find uuu = uuu(x, t) such that uuu(0, ·) = uuu0(·) in Ω and for all t ∈ [0, T ],

(1.1) −divσ(u)σ(u)σ(u) = fff, in Ω

(1.2) σσσij(uuu) = aijkl · εkl(uuu), in Ω

(1.3) uuu = 0 on Γ1

(1.4) σσσ ·nnn = hhh on Γ2,

the contact condition:

(1.5) uN ≤ g, σσσN (u) ≤ 0, (uN − g)σσσN (u) = 0 on ΓC

and Coulomb friction on ΓC :

‖σT (u)‖ ≤ µF |σN (u)|, such that :(1.6)

− if ‖σT (u)‖ < µF |σN (u)| ⇒ uT = 0

− if ‖σT (u)‖ = µF |σN (u)| ⇒ ∃α ≥ 0, such that u̇T = −ασT

where uuu0 denotes the initial displacement of the body. Supposing that a positive coefficient
µF ∈ L∞(ΓC), µF ≥ µ0 a.e. on ΓC of Coulomb friction is given, we introduce the space of
virtual displacements

V =
{
v ∈ (H1(Ω))2|v = 0 on Γ1

}
and its convex subset of kinematically admissible displacements

K = {vN ∈ V |vN ≡ v · n ≤ g on ΓC}.

We assume that the normal force on ΓC is known (as normal compliance) so that one can
evaluate the non-negative slip bound p ∈ L∞(ΓC) as a product of the friction coefficient and the
normal stress, i.e. p = µF λ1, when λ1 is the normal stress. We assume that normal interface
response (the normal compliance law) is:

σN (u) = −cN (uN − g)mN

where cN and mN are material constant depending on interface properties.
(P1) Find u ∈ K such that J(u) = min

v∈K
J(v).

The minimized functional representing the total potential energy of the body has the form:

J(v) =
1
2
a(v, v)− L(v) + j(v)

where:
- the bilinear form a is given by

a(v, w) =
∫

Ω
aijklεij(v)εkl(w)dx

- linear functional L is given by:

L(v) =
∫

Ω
fvdx +

∫
Γ2

hvds;
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- the sublinear functional j is given by:

j(v) =
∫

ΓC

p |vT | ds +
∫

ΓC

cN (u− g)mnvNds

where vT ∈ (L∞(ΓC))2 denotes the tangent vector to boundary Γ.
It is known that the problem (P1) is non-differentiable due to the sublinear term j, and has a
unique solution [9].

The variational formulation, in the quasi-static case, is equivalent to the quasi-variational
inequality:
(P2) Find u(x, t) ∈ K× [0, T ] s. t. a(u, v− u̇)+j(v− u̇) ≥ (L, u− v̇) ∀v ∈ K,∀t ∈ [0, T ], T > 0,
with initial conditions u(x, 0) = u0, u̇(x, 0) = u1.

The existence and uniqueness of the solution of this quasi-variational inequality are proven
under the assumption that µF is sufficiently small and mes(Γ0) > 0 [16].

The Lagrangian formulation of the problem (P1) is given by introducing
L : V × Λ1 × Λ2 → R, with

L(v, µ1, µ2) =
1
2
a(v, v)− L(v) + 〈µ1, vN − g〉+

∫
ΓC

µ2vT ds

where Λ1 = {µ1 ∈ H− 1
2 (ΓC)|µ1 ≥ 0} , Λ2 = {µ2 ∈ L∞(ΓC)| |µ2| ≤ p on ΓC}.

The space H− 1
2 (ΓC) is the dual of

H
1
2 (ΓC) = {γ ∈ L2(ΓC)| ∃v ∈ V s.t. γ = vN on ΓC}

and the ordering µ1 ≥ 0 means, in the variational form, that 〈µ1, vN − g〉 ≤ 0, ∀ v ∈ K, where
〈·, ·〉 denotes the duality pairing between H− 1

2 (ΓC) and H
1
2 (ΓC). Since L2(ΓC) is dense in

H− 1
2 (ΓC), the duality pairing 〈·, ·〉 is represented by a scalar product in L2(ΓC).

The Lagrange multipliers µ1, µ2 are considered as functionals on the contact part of the
boundary Γ. It is important that the Lagrange multipliers do have mechanical significance:
while the first one is related to the non-penetration conditions and represents the normal stress,
the second one removes the non-differentiability of the sublinear functional

j2(v) = sup
µ2∈Λ2

∫
ΓC

µ2vT ds

and represents the tangential stress.
The equivalence between the problem (P1) and the lagrangian formulation is given by:

inf
v∈K

J(v) = inf
v∈V

sup
µ1∈Λ1,µ2∈Λ2

L(v, µ1, µ2).

By the mixed variational formulation of the problem (P1) we mean a saddle point problem:

(P3) find (w, λ1, λ2) ∈ V × Λ1 × Λ2 such that
L(w, µ1, µ2) ≤ L(w, λ1, λ2) ≤ L(v, λ1, λ2), ∀ (v, µ1, µ2) ∈ V × Λ1 × Λ2.

It is known that (P3) has a unique solution [2] and its first component w = u ∈ K solves (P1)
and the Lagrange multipliers λ1, λ2 represent the normal and tangential contact stress on the
contact part of the boundary, respectively.

Remarks.
10. For the contact problem with Coulomb friction, we use the formula p ≡ µF λ1, for the slip

bound on the contact boundary ΓC , where λ1 ≡ λ1(p) is the normal stress on ΓC and µF is
the coefficient of friction. Unfortunately this problem cannot be solved as a convex quadratic
programming problem because p is an a priori parameter in (P3), while λ1 is an a posteriori one.
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Fig 1. The geometry (h=40 mm) and the loading

µ F
daN/mm2

f
daN/mm2

Separate
part AB
mm

Sliding
part BC
mm

Stick
part CD
mm

1
1
0.2
0.2
0.2

10
15
10
10
10

-5
-5
-5
-15
-25

3.75
5
0
0
0

20
20.75
40
22.5
5

16.25
7.5
0
17.5
35

Table 1. Contact states for different loading cases
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Journal de Mécanique Theoretique et Appliquée, Spec. issue, suppl. to vol. 7 (1998), 111-128

[15] Rocca, R., Cocou, M., Numerical analysis of quasi-static unilateral contact problems with local friction, SIAM
J. NUMER. ANAL., 39, No. 4, pp. 1324-1342, 2001

[16] Rocca, R., Cocou, M., Existence and approximation of a solution to quasi-static Signorini problem with local
friction, Internat J. Eng. Sci. 39 (2001), pp. 1253-1258

[17] Wang, G., Wang, L., Uzawa type algorithm based on dual mixed variational formulation, Applied Mathematics
and Mechanics, 23, No.7, (2002), pp. 765-772

[18] Wohlmuth, I. B., Krause, H. R., A multigrid method based on the unconstrained product space for mortar
finite element discretetizations, SIAM J. NUMER. ANAL., 39 (2001), No. 1, pp. 192-213

[19] Wriggers P., Simo J.C., A note on tangent stiffness for fully nonlinear contact problems, Comm. in App.
Num. Math., 1 (1985), 199-203

[20] Bartosz K. Hemivariational inequality approach to the dynamic viscoelastic sliding contact problem with wear,
Nonlinear Analysis, 65 (2006), pp.546-566

Department of Mathematics and Computer Science,
North University of Baia Mare,
Victoriei, 76, 430121 Baia Mare, Romania
E-mail address: nicpop@ubm.ro

93




