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CONSTRUCTIVE SOLUTION OF PROBLEMS IN MECHANICS OF
CONTINUA

SILVIU SBURLAN

Abstract. It is well known the importance of the effective solution, both analytically or nu-
merically, of problems in mechanics. In this work we extend the multiple orthogonal sequence
method to the energetic space of an abstract linear monotone operator. The method leads to an
abstract eigenvalue problem that it produces orthonormal bases in some nested Hilbert spaces,
that they are suitable to develop abstract Fourier or Galerkin-projection methods. Some ex-
amples are given and the constructive solution of the dynamical problem in linear elasticity is
shown.
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Let X be a real Hilbert space with inner product (·, ·) and the induced norm ‖·‖. Consider a
linear operator B : D(B) ⊂ X → X, with D(B) infinite dimensional, which is symmetric, i.e.

(1) (Bu, v) = (u, Bv),∀u, v ∈ D(B)

and strongly monotone, that is, there exists c > 0 such that

(2) (Bu, u) ≥ c ‖u‖2 ,∀u ∈ D(B).

We induce on D(B) the energetic inner product

(u, v)E := (Bu, v),∀u, v ∈ D(B)

and the energetic norm
‖u‖ :=

√
(u, u)E ,∀u ∈ D(B).

Denote by E the completion in X of the linear subspace D(B) with respect to the energetic
norm and call it the energetic space of the operator B. It contains all u ∈ X that are limit
points of Cauchy sequences {un} ⊂ D(B) with respect to the energetic norm ‖·‖E . Extending
by continuity the energetic inner product the energetic space E becomes a real Hilbert space
containing D(B) as a dense subset and the embedding E ↪→ X is continuous, namely

‖ u‖ ≤ c−
1
2 ‖u‖E ,∀u ∈ E.

The duality map J : E → E∗, defined through

< Ju, v >= (u, v)E ,∀u, v ∈ E,

is a linear homeomorphism with

‖Ju‖ = ‖u‖E ,∀u ∈ E,

(see D. Pascali and S. Sburlan, [7, p. 112]), and it is an extension of B, i.e.,

Ju = Bu,∀u ∈ D(B).

The Friedrichs extensionA : D(A) ⊆ X → X of operator B is defined through

(3) Au := Ju,∀u ∈ D(A),

where D(A) := {u ∈ E | Ju ∈ X}. Observe that u ∈ D(A) if and only if there exists a f ∈ X
such that

< Ju, v >= (f, v)E ,∀v ∈ E
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and D(B) ⊆ E ⊆ X ⊆ E∗ (see E. Zeidler [11, p. 280]).
Remark that the Friedrichs extension is in fact the maximal monotone extension of B in X,

since D(A) is dense in X and A is closed, self-adjoint, bijective and strongly monotone, i.e.,

(Au, u) ≥ c ‖u‖2 ,∀u ∈ D(A),

(see A. Haraux [2, p.48]). Also, the inverse operator A−1 : X → X is linear continuous self-
adjoint and compact, whenever the embedding E ↪→ X is compact. Therefore applying the
Fredholm theory, we can state following variant of multiple orthogonal sequence theorem (G.
Moroşanu and S. Sburlan [3]):

Theorem 1. If the embedding E ↪→ X is compact, then there exist the sequences {en}n∈N ⊂ E
and {λn}n∈N ⊂ (0,∞) that are eigensolutions of A, i.e.,

(4) (Aen, v) = λn(en, v),∀v ∈ X, n ∈ N

and such that:
i) {en}n∈N is an orthonormal basis in E;
ii) {

√
λnen}n∈N is an orthonormal basis in X;

iii) {λnen}n∈N is an orthonormal basis in E∗;
iv) {λn}n∈N is increasingly divergent to +∞.

Direct consequence: Denote by

En := Sp{e1, e2, . . . , en} ⊂ E,

Xn := Sp{
√

λ1e1,
√

λ2e2, . . . ,
√

λnen} ⊂ X

and
E∗

n := Sp{λ1e1, λ2e2, . . . , λnen} ⊂ E∗,

the finite dimensional subspaces generated by the finite sequence {e1, e2, . . . , en}.
Then En, Xn and E∗

n are projectionally complete in E, X and E∗ respectively, that is πnu → u
in each space, where

(5) πnu :=
n∑

k=1

αkϕk,∀n ≥ 1,

with {ϕ1, ϕ2, . . . , ϕn} one of the above mentioned basis and αk, 1 ≤ k ≤ n, the corresponding
Fourier coefficients.

These coordinate systems can be used either for abstract Galerkin projection method or for
abstract Fourier series method (see S. Sburlan and G. Moroşanu [10]).

Consider the following Cauchy problem in X:

(6)
{

y′′(t) + Ay(t) = f(t), 0 ≤ t ≤ T
y(0) = y0, y

′(0) = y1,

under the following assumptions on the data

(7) y0 ∈ E, y1 ∈ X, f ∈ L2(0, T ;X).

Searching the solution of the form

(8) y(t) =
∞∑

n=1

bn(t)en,

we obtain that the coefficients must satisfy the equations

(9)
{

b′′n(t) + λnbn(t) = fn(t), 0 ≤ t ≤ T
bn(0) = y0n, b′n(0) = y1n,
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where the Fourier coefficients

y0n =< y0, en >E= λn(y0, en), fn(t) :=< f(t), en >= λn(f(t), en)

and
y1n := (y1, en)E = λn(y1, en).

After solving (9), we obtain

(10) bn(t) = y0n cos
√

λnt +
y1n√
λn

sin
√

λnt +
1√
λn

∫ t

0
fn(s) sin

√
λn(t− s)ds.

and it is true the following:

Theorem 2. (Moroşanu-Sburlan [5]) Under the hypotheses (7), the function y(t) given by (8),
(10), belongs to C([0, T ];E) ∩ C1([0, T ];X) ∩ H2([0, T ];E∗) and it is the unique weak solution
of the problem (6), i.e. y(0) = y0, y

′(0) = y1 and

(y′′(t), v) + (Ay(t), v) = (f(t), v),∀v ∈ E.

Furthermore, under the stronger assumption on the data

(11) f ∈ H1([0, T ];X), y0 ∈ E, y1 ∈ E, Ay0 ∈ X,

the solution y ∈ C1([0, T ];E) ∩ C2([0, T ];X) verifies classically the following Cauchy problem

(12)
{

y′′(t) + By(t) = f(t), 0 ≤ t ≤ T
y(0) = y0, y

′(0) = y1.

Proof.(Sketch) We obtain easily the estimations

|bn (t)|2 ≤ 3
(

y2
0n +

y2
1n

λn
+

T

λn

∫ t

0
|fn (s)|2 ds

)
and ∣∣∣b′

n (t)
∣∣∣2

λn
≤ 3

(
y2
0n +

y2
1n

λn
+

T

λn

∫ T

0
|fn (t)|2 ds

)
which assure that y ∈ C([0, T ];E) ∩ C([0, T ];X). On the other hand, by the first equation in
(9) we have

b′′n(t) = −λnbn(t) + fn(t), a.a. t ∈ [0, T ]
which leads to the estimations

|b′′n(t)|2

λ2
n

≤ C

(
|bn(t)|2 +

|fn(t)|2

λn

)
, C > 0,

|b′′n(t)|2

λn
≤ 4

(
λny2

0n + y2
1n +

|fn(0)|2

λn
+ T

∫ T

0
λn

∣∣f ′n(s)
∣∣2 ds

)
.

These estimations are used to prove either y′′ ∈ L2([0, T ];X) in the case of weak solution, or
y′′ ∈ C([0, T ];X) in the case of classical solution. 2

The above conditions can be extended to semilinear problems when f(t) is perturbed by a
small nonlinearity, namely

(13) f(t, y) := f(t) + δg(t, y)

where δ > 0 is so small that δ2 can be neglected. Indeed, the key step consists in proving some
estimations concerning bn(t) and its derivates. These estimations depend on

|fn(t, y)|2 ≤ 2
(
|fn(t)|2 + δ2 |gn(t, y)|2

)
≤ C |fn(t)|2 ,
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with an available C > 0. Thus we can reduce this semilinear case to the former one studied
above.

Dynamical problem in linear theory of elasticity is a relevant problem for this method:
The deformation of a body B, that occupies a bounded region Ω in the space RN (N = 2 or

3), is characterized by the displacement vector u : Ω×(0, T ) → RN and the corresponding strain
tensor ε = ε(u). In the case of small (infinitesimal) deformation, ε(u) reduces to the symmetric
part of the displacement gradient, i.e.,

(14) ε(u) :=
{

εij(u) | εij(u) =
1
2

(
∂ui

∂xj
+

∂uj

∂xi

)
, 1 ≤ i, j ≤ N

}
.

The constitutive relation that characterizes the elasticity is a generally nonlinear dependence
of the stress tensor

σ := {σij |σij = σji, 1 ≤ i, j ≤ N}
on the strain, namely,

(15) σ = σ(ε) = Aε + σ(|ε)2),

where A := {aijkl ∈ R|aijkl = ajikl = aklij , 1 ≤ i, j, k, l ≤ N} are elastic coefficients.
Dynamical problem of linear elasticity ask for the displacement u, that is the solution of the

initial and boundary value problem

(16)


utt − divσ(ε(u)) = f in Ω× (0, T ),
u = 0 on Γ× (0, T ),
σij(ε(u))nj = 0 on (∂Ω \ Γ)× (0, T ),
u(0) = u0, ut(0) = u1.

Define on

D(B) :=
{
y ∈ [C2(0, T ;C2(Ω̄))]N | y = 0 on Γ× (0, T ),

σijnj = 0 on (∂Ω \ Γ)× (0, T )}

the linear operator induced by the problem (16):

By := −divσ(ε(y)).

Then by Green’s formula we have:

(Bu, v) := −
∫

Ω
divσ(ε(u))vds =

1
2

∫
Ω

aijklεkl(u)εij(v)dx =

=
1
2

∫
Ω

aklijεij(v)εkl(u)dx = −
∫

Ω
div σ(ε(v))udx =: (u, Bv),∀u, v ∈ D(B).

Moreover, we have

(Bu, u) =
1
2

∫
Ω

aijklεij(u)εkl(u)dx ≥ c

2

∫
Ω

εij(u)εij(u)dx = c

∫
Ω
|∇u|2dx,

by the symmetry of ε.
Therefore we can apply the above theory and define the energetic space E as the completion

of D(B), with respect to the norm

‖u‖2
E :=

1
2

∫
Ω

σij(ε(u)) · εij(u)dx =
1
2

∫
Ω

aijklεij(u)εkl(u)dx

The duality map JE : E → E∗ is defined by

< JEu, v >E :=
1
2

∫
Ω

aijklεij(u)εkl(v)dx,
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and thus we obtain the Friedrichs extension as it is shown. Remark that

W = 2 < JEu, u >=
∫

Ω
aijklεij(u)εkl(u)dx

is the strain energy induced by u.
In conclusion, it is true the following

Theorem 3. If y0 ∈ E, y1 ∈ X and f ∈ [L2(0, T ;X)]N , then there exists a unique weak
solution of the problem (16) that can be obtained by Fourier method. Furthermore, for Ay0 ∈ X
and f ∈ [H1(0, T ;X)]N this solution is a classical one.

Similar results are also true for the dynamical problem of linear theory of finte elasticity (see
[13-14]).
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