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ON AN INTEGRAL INEQUALITY

DINU TEODORESCU

Abstract. In this note we will present two proofs for an integral inequality. The first uses the
Jensen’s Inequality and the second uses ingeniously the Cauchy-Schwartz Inequality.
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The Result

Theorem 1 Let f : [0, 1] → (−1, 1) be a continuous function so that
1∫
0

f(x)dx /∈ {−1, 1}.

Then:

(1)

(
1∫
0

f(x)dx

)2

√
1−

(
1∫
0

f(x)dx

)2
≤

1∫
0

f2(x)√
1− f2(x)

dx.

Proof 1 : We will use the following
Theorem( Jensen’s Inequality) (see [1]) Let f : [0, 1] → (u, v) be a continuous function

and g : (u, v) → R be a convex function. Then

g

 1∫
0

f(x)dx

 ≤
1∫

0

g(f(x))dx.

Let g : (−1, 1) → R defined by g(x) = x2
√

1−x2
. We have g ∈ C2(−1, 1) and

g
′
(x) =

2x− x3

(1− x2)
√

1− x2

g
′′
(x) =

x2 + 2
(1− x2)2

√
1− x2

.

It is clear that g
′′
(x) ≥ 0 on (-1,1) and, consequently, g is a convex function. The inequality

(1) results now with the Jensen’s Inequality.
Proof 2 : With the Cauchy-Schwartz inequality we obtain 1∫

0

f(x)dx

2

=

 1∫
0

f(x)
4
√

1− f2(x)
4
√

1− f2(x)dx

2

≤

 1∫
0

f2(x)√
1− f2(x)

dx

  1∫
0

√
1− f2(x)dx

 .

Thus
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(2)

 1∫
0

f(x)dx

2

≤

 1∫
0

f2(x)√
1− f2(x)

dx

  1∫
0

√
1− f2(x)dx

 .

We apply one more time the Cauchy-Schwartz inequality and we have 1∫
0

√
1− f2 (x)dx

2

=

 1∫
0

√
(1 + f (x)) (1− f (x))dx

2

≤

≤

 1∫
0

(1 + f(x))dx

  1∫
0

(1− f(x))dx

 =

 1∫
0

dx

2

−

 1∫
0

f(x)dx

2

=

1−

 1∫
0

f(x)dx

2

.

Therefore

(3)

1∫
0

√
1− f2 (x)dx ≤

√√√√√1−

 1∫
0

f(x)dx

2

.

From (2) and (3) it results that 1∫
0

f(x)dx

2

≤

 1∫
0

f2(x)√
1− f2(x)

dx


√√√√√1−

 1∫
0

f(x)dx

2

and the proof of the inequality (1) is complete.
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