JOURNAL OF SCIENCE AND ARTS

ON AN INTEGRAL INEQUALITY

DINU TEODORESCU

Abstract

In this note we will present two proofs for an integral inequality. The first uses the Jensen's Inequality and the second uses ingeniously the Cauchy-Schwartz Inequality.

Mathematics Subject Classification (2000): 26D15

The Result

Theorem 1 Let $f:[0,1] \rightarrow(-1,1)$ be a continuous function so that $\int_{0}^{1} f(x) d x \notin\{-1,1\}$. Then:

$$
\begin{equation*}
\frac{\left(\int_{0}^{1} f(x) d x\right)^{2}}{\sqrt{1-\left(\int_{0}^{1} f(x) d x\right)^{2}}} \leq \int_{0}^{1} \frac{f^{2}(x)}{\sqrt{1-f^{2}(x)}} d x . \tag{1}
\end{equation*}
$$

Proof 1 : We will use the following
Theorem(Jensen's Inequality) (see [1]) Let $f:[0,1] \rightarrow(u, v)$ be a continuous function and $g:(u, v) \rightarrow R$ be a convex function. Then

$$
g\left(\int_{0}^{1} f(x) d x\right) \leq \int_{0}^{1} g(f(x)) d x .
$$

Let $g:(-1,1) \rightarrow R$ defined by $g(x)=\frac{x^{2}}{\sqrt{1-x^{2}}}$. We have $g \in C^{2}(-1,1)$ and

$$
\begin{aligned}
g^{\prime}(x) & =\frac{2 x-x^{3}}{\left(1-x^{2}\right) \sqrt{1-x^{2}}} \\
g^{\prime \prime}(x) & =\frac{x^{2}+2}{\left(1-x^{2}\right)^{2} \sqrt{1-x^{2}}} .
\end{aligned}
$$

It is clear that $g^{\prime \prime}(x) \geq 0$ on $(-1,1)$ and, consequently, g is a convex function. The inequality (1) results now with the Jensen's Inequality.

Proof 2 : With the Cauchy-Schwartz inequality we obtain

$$
\begin{gathered}
\left(\int_{0}^{1} f(x) d x\right)^{2}=\left(\int_{0}^{1} \frac{f(x)}{\sqrt[4]{1-f^{2}(x)}} \sqrt[4]{1-f^{2}(x)} d x\right)^{2} \leq \\
\left(\int_{0}^{1} \frac{f^{2}(x)}{\sqrt{1-f^{2}(x)}} d x\right)\left(\int_{0}^{1} \sqrt{1-f^{2}(x)} d x\right)
\end{gathered}
$$

Thus

JOURNAL OF SCIENCE AND ARTS

(2)

$$
\left(\int_{0}^{1} f(x) d x\right)^{2} \leq\left(\int_{0}^{1} \frac{f^{2}(x)}{\sqrt{1-f^{2}(x)}} d x\right)\left(\int_{0}^{1} \sqrt{1-f^{2}(x)} d x\right) .
$$

We apply one more time the Cauchy-Schwartz inequality and we have

$$
\begin{gathered}
\left(\int_{0}^{1} \sqrt{1-f^{2}(x)} d x\right)^{2}=\left(\int_{0}^{1} \sqrt{(1+f(x))(1-f(x))} d x\right)^{2} \leq \\
\leq\left(\int_{0}^{1}(1+f(x)) d x\right)\left(\int_{0}^{1}(1-f(x)) d x\right)=\left(\int_{0}^{1} d x\right)^{2}-\left(\int_{0}^{1} f(x) d x\right)^{2}= \\
1-\left(\int_{0}^{1} f(x) d x\right)^{2}
\end{gathered}
$$

Therefore
(3)

$$
\int_{0}^{1} \sqrt{1-f^{2}(x)} d x \leq \sqrt{1-\left(\int_{0}^{1} f(x) d x\right)^{2}}
$$

From (2) and (3) it results that

$$
\left(\int_{0}^{1} f(x) d x\right)^{2} \leq\left(\int_{0}^{1} \frac{f^{2}(x)}{\sqrt{1-f^{2}(x)}} d x\right) \sqrt{1-\left(\int_{0}^{1} f(x) d x\right)^{2}}
$$

and the proof of the inequality (1) is complete.

References

[1] W. Rudin, Real and Complex Analysis, Third Edition, McGraw-Hill, Inc., 1987
Department of Mathematics, Valahia University of Târgovişte,
Bd. Uniriı 18-24, Târgovişte, Romania
E-mail address: dteodorescu2003@yahoo.com

