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A MOKOBODZKI TYPE THEOREM

CORNELIU UDREA

Abstract. This work deals with the nonlinear potential theory actually with the corresponding
specific order. Thus we shall propose a definition of the specific order ([3]) with respect to a
nonlinear operator (respectively to a nonlinear resolvent) and afterwards, as in the linear case,
we shall prove a Mokobodzki type theorem in the case of a nonlinear operator (respectively of
a nonlinear resolvent).

1. Introduction

In this work (E,Σ, m) is a measure space (i.e. Σ is a σ-algebra of subsets of E and m is a
complete measure on Σ). Moreover we suppose that m is a σ-finite measure. All functions are
defined m-a. e. on E and all inequalities are accomplished m-a.e.. For all f ∈ RE we shall use
the following standard notations:

m∞(f) := sup{α : α ∈ R and f ≥ α m-a. e.},

M∞(f) := −m∞(−f) and ‖f‖∞ := M∞(|f |).
We shall consider the following sets of functions on E:

M(m) := {f : f ∈ RE and f is m-measurable function},

Ml(m) := {f : f ∈M(m) and m∞(f) > −∞},
M+(m) := {f : f ∈M(m) and f ≥ 0},

L∞(m) := {f : f ∈M(m) and ‖f‖∞ < ∞}.
Throughout this work the symbols T, N will denote nonlinear increasing maps on L∞(m) with

values in L∞(m)(they are called operators ([2])) and such that T and N are continuous on the
increasing sequences of L∞(m) (we shall say that T, N are increasingly continuous). Moreover
T (respectively) N will denote the natural extension of T (respectively N) to the set Ml(m),
that is for all f ∈Ml(m) :

T (f) = sup{Tg : g ∈ L∞(m) and g ≤ f} = sup{T (inf(f, n)) : n ∈ N}.

Obviously T (and also N) is increasingly continuous (on Ml(m)).

2. The case of a nonlinear operators

For N an increasingly continuous operator on L∞(m) we define the set of the N -supermedian
functions, and a corresponding specific order for which we prove a Mokobodzki type theorem.

Definition 2.1. Let u ∈Ml(m).
(i). The function u is called N-supermedian function iff Nu ≤ u.
(ii). We shall use the following notation:

SN = S(N) := {u ∈Ml(m) : u is a N-supermedian function }.
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Remark 2.2. (i). According to the definitions, if u ∈ Ml(m), then the following statements
will be equivalent: (a). u ∈ SN . (b). ∀g ∈ L∞(m) such that g ≤ u we have that Ng ≤ u. (c).
∀n ∈ N, N(inf(u, n)) ≤ u.

(ii). If N0 ≤ 0, then 0 ∈ SN . In another way we shall define the sequence

f1 = 0, f2 = sup(0, N0),∀n ∈ N, fn+1 = sup(fn, Nfn),

and the function r = sup
n∈N

fn. It is obvious that Nr ≤ r and so that r ∈ SN . That being so we

have that SN 6= ∅.

Proposition 2.3. We have the following assertions:
(i). Let u ∈ SN and f ∈ Ml(m); it follows that: (a). Nu ∈ SN . (b). If Nu ≤ f ≤ u, then

f ∈ SN .
(ii). Let un ⊂ SN . (a). If inf

n∈N
un ∈ Ml(m), then inf

n∈N
un ∈ SN . (b). If (un)n is increasing,

then sup
n∈N

un ∈ SN .

Proof. They are obvious. �

Remark 2.4. The following assertions are obvious:
(i). When N is a subadditive operator, we have that SN + SN ⊂ SN (see [3] for a such

nonlinear operator).
(ii). If N has the property:

∀ u ∈ SN and f ∈ L∞(m), N(f + u) ≤ Nf + u,

then we shall find again that SN + SN ⊂ SN .
(iii). If N is a positive homogeneous map, then ∀α ∈ R+, αSN ⊂ SN .

Definition 2.5. For all f ∈Ml(m) we define RNf := inf{u ∈ SN : u ≥ f}. The function RNf
is called the N-reduced function of f.

Proposition 2.6. For all f ∈Ml(m) we have the following assertions:
(i). The map RNf is N-supermedian function.
(ii). RNf = sup(f,N(RNf)).
(iii). The map RN : Ml(m) → SN is an operator which is increasingly continuous.

Proof. It is similar to the linear case ([1]).
(i). We define the sequence: f1 := f, fn+1 := sup(fn, Nfn),∀n ∈ N∗ and the map r :=

sup
n∈N

fn ∈Ml(m). According to the definitions:

∀ n ∈ N∗, fn ≤ fn+1, Nfn ≤ fn+1 and f ≤ r.

Therefore
Nr = supNfn ≤ sup fn+1 = r, r ∈ SN and RNf ≤ r.

If s ∈ SN is such that f ≤ s then for all n ∈ N∗, fn ≤ s and r ≤ s that is r = RNf ∈ SN .
(ii). We have that N(RNf) ≤ sup(f,N(RNf)) ≤ RNf, hence

sup(f,N(RNf)) ∈ SN . Since f ≤ sup(f,N(RNf)), we shall find that RNf ≤ sup(f,N(RNf)) ≤
RNf.

(iii). Obviously RN is an increasing map on Ml(m). If (fn)n ⊂ Ml(m) is an increasing
sequence then

sup
n∈N

RNfn ≤ RN (sup
n∈N

fn) and fn ≤ RNfn, ∀n ∈ N.Therefore

sup
n∈N

fn ≤ sup
n∈N

RNfn and, since sup
n∈N

RNfn ∈ SN , we have that
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RN (sup
n∈N

fn) ≤ sup
n∈N

RNfn. �

Definition 2.7. (i). For all f, g ∈Ml(m) we shall denote f � g iff f ≤ g and f +Ng ≤ g+Nf.
(ii). It is immediate that the relation � defines an order relation on the space L∞(m) which

is called the specific order with respect to N .

Theorem 2.8 (a Mokobodzki type theorem). For all f ∈Ml(m) and t ∈ SN such that f � t,
we shall have that RNf � t.

Proof. If (fn)n∈N is the sequence which is defined in the proof of the Proposition 6, then we
shall prove that, for all n ∈ N, fn � t. It is obvious that f1 � t and if fn � t we shall have the
inequalities: fn +Nt ≤ t+Nfn, and fn ≤ t. Since N is an increasing map we find that fn+1 ≤ t,
hence:

fn+1 + Nt = sup(fn, Nfn) + Nt ≤ sup(t + Nfn, Nfn + Nt) = t + Nfn ≤ t + Nfn+1;

therefore fn+1 � t.
Moreover we remark that fn + Nt ≤ t + N(RNf), for all n ∈ N∗, and so that RNf + Nt ≤

t + N(RNf). Since it is obvious that RNf ≤ t, we have that RNf � t. �

Definition 2.9. (i).If (T,N) is pair of operators such that

(I −N)(I + T ) = I = (I + T )(I −N),

then (T,N) is called a pair of conjugated operators (where I is the identity map of L∞(m))(in
conformity with [2], [3] or [5]).

(ii). The pair (T,N) is a pair of conjugated operators if and only if

T (I −N) = N and N(I + T ) = T.

Remark 2.10. Let (T,N) be a pair of conjugated operators.
(i). If f, g ∈ L∞(m) are such that f + Ng ≤ g + Nf, then f � g since from inequality

f −Nf ≤ g −Ng we have that f = (I + T )(f −Nf) ≤ (I + T )(g −Ng) = g.
(ii). For all f ∈Ml(m) such that f ≥ 0 we have that Tf ∈ SN .
(iii). Obviously, T0 = 0 if and only if N0=0.
(iv). Let T̃,Ñ : L∞(m) → L∞(m) be defined by T̃ f = Tf−T0, respectively Ñf = N(f +T0)−

T0. Then (T̃ , Ñ) is a pair of conjugated operators and: (a). Ñ0 = T̃0 = 0. (b). S
eN

= SN −T0.

Definition 2.11. N is called a sub-Markov operator on L∞(m) iff for all f, g ∈ L∞(m) we have
that

‖Nf −Ng‖∞ ≤ ‖f − g‖∞.

Remark 2.12. (i). It is obvious that N : L∞(m) → L∞(m) is a sub-Markov operator if and
only if

∀ f, g ∈ L∞(m),∀α ∈ (0,∞), f ≤ g + α ⇒ Nf ≤ Ng + α.

(ii). Suppose that (T,N) is a pair of conjugated operators on L∞(m) such that N is a sub-
Markov one. Then

(a). T0 + R+ ⊂ SN .
(b). If for each n ∈ N?, en := n + T0 then (en)n∈N? ⊂ SN and lim

n→∞
en = ∞(m-a.e.)
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3. The case of a nonlinear resolvent

Throughout this section, for all p ∈ [0,∞), Vp : L∞(m) → L∞(m) is a nonlinear increasingly
continuous operator.

Definition 3.1. (see [2] and also [3], [5] or [6]).
(i). V := (Vp)p∈(0,∞) is called (nonlinear) resolvent (on L∞(m)) iff for all p, q ∈ (0,∞) we

have that:
(I − (p− q)Vp)(I + (p− q)Vq) = I.

(ii). If, for all p ∈ (0,∞),

(I − pVp)(I + pV0) = I = (I + pV0)(I − pVp),

then either V0 will be called the initial operator of the resolvent V, or V will be called the
resolvent associated with V0.

(iii). The resolvent V is called a sub-Markov resolvent if, for all p ∈ (0,∞), pVp is a
sub-Markov operator on L∞(m).

Remark 3.2. (i). The equalities of the resolvent’s definition are equivalent to the sentence: for
all p, q ∈ (0,∞), ((p− q)Vq, (p− q)Vp) is a pair of conjugated operators (on L∞(m)) and so that
to the relation:

Vp = Vq(I + (q − p)Vp),∀p, q ∈ (0,∞).
(ii). Similarly the property: V0 is the initial operator of the resolvent V means that, for all

p ∈ (0,∞), (pV0, pVp) is a pair of conjugated operators on L∞(m) and so that, for all p ∈ (0,∞),
we have the following relations:

V0 = Vp(I + pV0) and Vp = V0(I − pVp.)

Throughout this section we shall consider V = (Vp)p∈(0,∞) a sub-Markov resolvent associated
with the operator V0 (on L∞(m)), while Vp is defined on Ml(m) with values in Ml(m) (for all
p ∈ [0,∞)).

Definition 3.3. For all p ∈ (0,∞), we shall denote Lp : Ml(m) → Ml(m) the operator
Lpf := Vp(pf) and Sp := SLp.

All functions u ∈
⋂

p∈(0,∞)

Sp are called V-supermedian functions and SV := S(V) :=⋂
p∈(0,∞)

Sp.

Remark 3.4. (i) We have that: u ∈ SV if and only if, for all

p ∈ (0,∞), Vp(pu) ≤ u.

Moreover, for all u ∈ SV , V00 ≤ u and for all f ∈Ml(m) such that f ≥ 0 we have that V0f ∈ SV .
(ii). We shall define, for all n ∈ N, en := n + V00 and we shall have an increasing sequence

(en)n∈N such that en ∈ SV (Remark 2.12 (ii)) and lim
n→∞

en = ∞, m− a.e. on E.

(iii). By the definition u ∈ Ml(m) is V-supermedian function if and only if for all g ∈
L∞, g ≤ u we have that Vp(pg) ≤ u and the last assertion is equivalent to the sentence: for all
n ∈ N, Vp(p inf(n, u)) ≤ u, ∀p ∈ (0,∞).

Lemma 3.5. We have the following assertions
(i). For all p, q ∈ (0,∞) such that p < q it will result that: (a). For all u ∈ Sq, Vp(pu) ≤

Vq(qu). (b). Sq ⊂ Sp.
(ii). For all u ∈ SV , the function (p 7→ Vp(pu)) : (0,∞) →Ml(m) is increasing.
(iii). Let (un)n ⊂ SV . (a). If inf

n∈N?
un ∈ Ml(m), then inf

n∈N?
un ∈ SV . (b). If (un)n is

increasing, then sup
n∈N?

un ∈ SV .
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Proof. Obviously. �

Definition 3.6. (i). Let f ∈ Ml(m). The map inf{u : u ∈ SV and u ≥ f} is called the
SV-reduced function of f and it is denoted by Rυf := Rf.

(ii). It is obvious that, for all p ∈ (0,∞), f ≤ RLpf ≤ Rf,∀f ∈ Ml(m) (where Lp is the
operator from Definition 3).

(iii). Moreover, for all f ∈Ml(m) we have that Rf = R(sup(f, V00)).

Proposition 3.7. For all f ∈Ml(m) we have that Rf ∈ SV .

Proof. According to the Lemma 5,for all p, q ∈ (0,∞), p < q we have that RLpf ≤ RLqf and by
the Proposition 2.6 (i), RLpf ∈ Sp.

Let u := sup
p∈(0,∞)

RLpf, since RLqf ∈ Sp provided that p < q we have that

Vp(pRLqf) ≤ RLqf ≤ u,

and so that Vp(pu) = sup
q∈(0,∞)

Vp(pRLqf) ≤ sup
q∈(0,∞)

RLqf = u, ∀p ∈ (0,∞). Therefore u ∈ SV .

Obviously, f ≤ u and, if s ∈ SV is such that f ≤ s, we shall have that RLpf ≤ s for all
p ∈ (0,∞) and u ≤ s. Therefore u = Rf ∈ SV . �

Definition 3.8. For each f ∈Ml(m) we define

V∞f := sup
n∈N?

Vn(nf).

Remark 3.9. Obviously V∞f ∈Ml(m), ∀ f ∈Ml(m), so that
V∞ : Ml(m) →Ml(m).

Lemma 3.10. The function V∞ has the following properties:
(i). V∞ is increasing (hence V∞ is a nonlinear operator on Ml(m)).
(ii). V∞ is continuous on the increasing sequences of Ml(m).
(iii). V∞ is a sub-Markov operator from Ml(m) to Ml(m).

Proof. The assertions (i). and (ii). are obvious.
(iii). Let f, g ∈ Ml(m), and α ∈ (0,∞) be such that f ≤ g + α. Since for each n ∈ N? Ln is

a sub-Markov operator we have that:

Vn(nf) ≤ Vn(ng) + α ⇒ V∞f = sup
n∈N?

Vn(nf) ≤ sup
n∈N?

Vn(ng) + α = V∞g + α.

�

Theorem 3.11. We have the relation: SV = S(V∞).

Proof. Obviously that SV ⊂ S(V∞).

If s ∈ L∞(m) ∩ S(V∞), then s ∈
∞⋂

n=1
Sn. In view of Lemma 3.5:

∀ n ∈ N?, ∀ p ∈ N?, ∀ p ∈ (0, n), Sn ⊂ Sp ⇒ s ∈
⋂

p∈(0,∞)

Sp = SV .

�

Corollary 3.12. If follows that: RV∞ = RV .

Proof. The assertion is obvious. �

Definition 3.13. For all f, g ∈Ml(m) we shall say that f is specific smaller than g will respect
to V iff f is specific smaller than g with respect to V∞. If f, g ∈ Ml(m) are as above then we
shall denote this by f � g.
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Proposition 3.14 (a Mokobodzki type theorem). For all f ∈ Ml(m) and t ∈ SV . such that
f � t, we shall have that RVf � t.

Proof. Since RV = RV∞ in view of Theorem 2.8 the assertion is obvious. �
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