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A MOKOBODZKI TYPE THEOREM

CORNELIU UDREA

ABSTRACT. This work deals with the nonlinear potential theory actually with the corresponding
specific order. Thus we shall propose a definition of the specific order ([3]) with respect to a
nonlinear operator (respectively to a nonlinear resolvent) and afterwards, as in the linear case,
we shall prove a Mokobodzki type theorem in the case of a nonlinear operator (respectively of
a nonlinear resolvent).

1. INTRODUCTION

In this work (E,X, m) is a measure space (i.e. ¥ is a o-algebra of subsets of E and m is a
complete measure on ). Moreover we suppose that m is a o-finite measure. All functions are

defined m-a. e. on E and all inequalities are accomplished m-a.e.. For all f € R” we shall use
the following standard notations:

Moo(f) :==sup{a:a € R and f > o m-a. e.},
Moo(f) 7= —moo(=f) and || fllco := Moo (| f])-
We shall consider the following sets of functions on E:
M(m) ={f:fe€ R” and f is m-measurable function},
My(m) :={f : f € M(m) and moo(f) > —oo},
M (m) = {f: f € M(m) and f >0},
L>®(m) :={f: feM(m)and | f|le < 00}
Throughout this work the symbols T, N will denote nonlinear increasing maps on L>°(m) with
values in L®°(m)(they are called operators (]2])) and such that T and N are continuous on the
increasing sequences of L>°(m) (we shall say that T, N are increasingly continuous). Moreover

T (respectively) N will denote the natural extension of T (respectively N) to the set M;(m),
that is for all f € M;(m) :

T(f) =sup{Tg:g € L>®(m) and g < f} = sup{T(inf(f,n)) : n € N}.

Obviously T (and also N) is increasingly continuous (on M;(m)).

2. THE CASE OF A NONLINEAR OPERATORS

For N an increasingly continuous operator on L% (m) we define the set of the N-supermedian
functions, and a corresponding specific order for which we prove a Mokobodzki type theorem.

Definition 2.1. Let u € M;(m). B
(i). The function u is called N-supermedian function iff Nu < u.
(ii). We shall use the following notation:

Sy =8(N) :={ue Mi(m): uis a N-supermedian function }.
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Remark 2.2. (i). According to the definitions, if u € M;(m), then the following statements
will be equivalent: (a). u € Sy. (b). Vg € L>®(m) such that g < u we have that Ng < u. (c).
Vn € N, N(inf(u,n)) < u.

(i). If NO <0, then 0 € Sy. In another way we shall define the sequence

fl = 07f2 = Sup(O,NO),Vn €N, fn+1 = Sup(fnaan)a
and the function r = sup f,. It is obvious that Nr < r and so that r € Sy. That being so we

neN
have that Sy # 0.

Proposition 2.3. We have the following assertions: o o
(i). Let w € Sy and f € My(m); it follows that: (a). Nu € Sy. (b). If Nu < f < u, then
feSn.
(ii). Let u, C Sn. (a). If in]fvun € M;(m), then in]fvun € Sy. (b). If (up)n is increasing,
ne ne

then sup u, € Sn.
neN

Proof. They are obvious. U

Remark 2.4. The following assertions are obvious:

(i). When N is a subadditive operator, we have that Sy + Sy C Sy (see [3] for a such
nonlinear operator).

(7). If N has the property:

VuéeSy and f € L®(m), N(f +u) < Nf +u,

then we shall find again that Sy + Sy C S
(iii). If N is a positive homogeneous map, then Vo € Ry, aSy C Sy.

Definition 2.5. For all f € M;(m) we define RN f :=inf{u € Sy : u > f}. The function RN f
is called the N-reduced function of f.

Proposition 2.6. For all f € M;(m) we have the following assertions:
(i). The map RN f is N-supermedian function.
(ii). RN f = sup(f, N(RY f)),
(iii). The map RN : My(m) — Sn is an operator which is increasingly continuous.

Proof. 1t is similar to the linear case ([1]).
(i). We define the sequence: fi := f, for1 = sup(fn, Nfyn),Vn € N* and the map r :=
sup frn, € M;(m). According to the definitions:
neN
VneN, fo < fay1, Nfo < foprand f<r.

Therefore
Nr=supNf, <sup fui1=r r€Syand RVf <r.

If s € Sy is such that f < s then for all n € N*, f,, < s and r < s that is r = RN f € Sy.

(ii). We have that N(RY f) < sup(f, N(RV f)) < RN f, hence
sup(f, N(RN f)) € Sy. Since f < sup(f, N(RY f)), we shall find that RY f < sup(f, N(RN f)) <
RN f.

(iii). Obviously RY is an increasing map on M;(m). If (f,), C M;(m) is an increasing
sequence then

sup RN f, < RN (sup fr) and f, < RN f,, ¥n € N.Therefore
neN neN

sup f,, < sup RN f,, and, since sup R f,, € Sy, we have that
neN neN neN
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RN (sup f,) < sup RN f,,. O
neN neN

Definition 2.7. (i). For all f,g € M;(m) we shall denote f < g iff f < g and f+Ng < g+Nf.
(i). It is immediate that the relation < defines an order relation on the space L*°(m) which
1s called the specific order with respect to N.

Theorem 2.8 (a Mokobodzki type theorem). For all f € M;(m) and t € Sy such that f < t,
we shall have that RN f < t.

Proof. If (fn)nen is the sequence which is defined in the proof of the Proposition 6, then we
shall prove that, for all n € N, f;, <t. It is obvious that f; <t and if f,, <t we shall have the
inequalities: f, + Nt <t+ N f,, and f, < t. Since N is an increasing map we find that f,41 <t,
hence:

frni1 + Nt =sup(fn, Nfu) + Nt <sup(t + Nfnu, Nfy + Nt) =t + Nf, <t + Nfni1;

therefore f, 11 < t. o o o
Moreover we remark that f, + Nt <t + N(RN f), for all n € N*, and so that RN f + Nt <
t + N (RN f). Since it is obvious that R f < t, we have that RV f < ¢. O

Definition 2.9. (i).If (T,N) is pair of operators such that
(I-N)I+T)=1I=(I+T)I—-N),

then (T,N) is called a pair of conjugated operators (where I is the identity map of L*°(m))(in
conformity with 2], [3] or [5]).
(7). The pair (T,N) is a pair of conjugated operators if and only if

T(I-N)=N and NI+ T)=T.

Remark 2.10. Let (T,N) be a pair of conjugated operators.

(i). If f,g € L>®(m) are such that f + Ng < g+ Nf, then f < g since from inequality
f—=Nf<g—Ng we have that f = (I +T)(f —Nf) < (I +T)(g— Ng) =g.

(ii). For all f € Mi(m) such that f > 0 we have that Tf € Sn.

(11i). Obmously, T0 = 0 if and only if NO=0.

(iv). Let T,N : L(m) — L>(m) be defined by T f = T f —T0, respectively Nf=N(f+T0)—
TO. Then (T, N) is a pair of conjugated operators and: (a). NO=T0=0. (b). Sy =S8nv-T0.

Definition 2.11. N is called a sub-Markov operator on L (m) iff for all f,g € L>(m) we have
that

INf = Ngllso < [If = 9lloo-
Remark 2.12. (i). It is obvious that N : L*(m) — L*°(m) is a sub-Markov operator if and
only if
Vf,g€ L*(m),Va € (0,00),f <g+a=Nf<Ng+a.

(ii). Suppose that (T, N) is a pair of conjugated operators on L>°(m) such that N is a sub-
Markov one. Then

(a). T0+R+ C SN
(b). If for each n € N*, e, :=n+ T0 then (en)nenr C Sy and lim e, = co(m-a.e.)
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3. THE CASE OF A NONLINEAR RESOLVENT

Throughout this section, for all p € [0,00),V, : L>(m) — L*°(m) is a nonlinear increasingly
continuous operator.

Definition 3.1. (see [2] and also [3], [5] or [6]).
(i). V= (Vp)pe(o,00) 18 called (nonlinear) resolvent (on L*°(m)) iff for all p,q € (0,00) we
have that:
(I ==aVp)I +(p—a)Vy) = 1.
(it). If, for all p € (0,00),
(I =pVp)(I +pVo) =1 = (I +pVo)(I —pVy),

then either Vi will be called the initial operator of the resolvent V, or V will be called the
resolvent associated with V.

(111). The resolvent V is called a sub-Markov resolvent if, for all p € (0,00),pV), is a
sub-Markov operator on L (m).

Remark 3.2. (i). The equalities of the resolvent’s definition are equivalent to the sentence: for
all p,q € (0,00), (p—q)Vy, (p — @) V}) is a pair of conjugated operators (on L*(m)) and so that
to the relation:
Vo =VoI + (¢ = p)V3), VP, q € (0,00).
(ii). Similarly the property: Vi is the initial operator of the resolvent V means that, for all
p € (0,00), (pVo, pVp) is a pair of conjugated operators on L°°(m) and so that, for all p € (0, 00),
we have the following relations:

Vo = V(I +pWo) and V= Vo(I = pVp.)

Throughout this section we shall consider V = (V})),¢(0,00) @ sub-Markov resolvent associated
with the operator Vj (on L*°(m)), while V,, is defined on M;(m) with values in M;(m) (for all
p € [0,00)).

Definition 3.3. For all p € (0,00), we shall denote L, : M;(m) — M;(m) the operator
Lyf :=Vy(pf) and Sp := Si,,.
All functions u € () S, are called V-supermedian functions and Sy = S(V) =

p€(0,00)
N Sy
p€(0,00)

Remark 3.4. (i) We have that: v € Sy if and only if, for all
p € (0,00), Vp(pu) < u.

Moreover, for allu € Sy, V)0 < u and for all f € M;(m) such that f > 0 we have that Vo f € Sy.

(ii). We shall define, for all n € N, e, := n + Vy0 and we shall have an increasing sequence
(en)nen such that e, € Sy (Remark 2.12 (i1)) and nan§O en, =00, m —a.e. on E.

(iii). By the definition u € My(m) is V-supermedian function if and only if for all g €
L*>®, g < u we have that V,(pg) < u and the last assertion is equivalent to the sentence: for all
n € N, V,(pinf(n,u)) < u,Vp € (0,00).

Lemma 3.5. We have the following assertions

(1). For all p,q € (0,00) such that p < q it will result that: (a). For all u € S;, V,(pu) <
Vy(qu). (b). S C Sp.

(i1). For all u € Sy, the function (p — V,(pu)) : (0,00) — M;(m) is increasing.

(111). Let (up), C Sy. (a). If niéllg* up, € Mi(m), then nienl\f]’* up, € Sy. (b). If (up)n is

increasing, then sup u, € Sy.
neN*
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Proof. Obviously. O

Definition 3.6. (i). Let f € M;(m). The map inf{u : u € Sy andu > f} is called the
Sy-reduced function of f and it is denoted by RV f := Rf.

(ii). It is obvious that, for all p € (0,00), f < Ri»f < RfNf € My(m) (where Ly, is the
operator from Definition 3).

(11i). Moreover, for all f € M;(m) we have that Rf = R(sup(f, V50)).

Proposition 3.7. For all f € M;(m) we have that Rf € Sy.

Proof. According to the Lemma 5,for all p, ¢ € (0,00), p < g we have that R f < Rlaf and by
the Proposition 2.6 (i), Rl7f € S,.
Let u:= sup RI»f, since Rlaf ¢ Sp provided that p < ¢ we have that
p€(0,00)
Vo(pRYf) < RM f <,

and so that Vj(pu) = sup Vjp(pRLef) < sup RFaf =wu,Vp € (0,00). Therefore u € Sy.

g€(0,00) q€(0,00)
Obviously, f < w and, if s € Sy is such that f < s, we shall have that Rl» f < s for all
p € (0,00) and u < s. Therefore u = Rf € Sy. O

Definition 3.8. For each f € M;(m) we define

Voo f := sup Vi (nf).
neN*
Remark 3.9. Obviously Voo f € My(m), ¥V f € Mi(m), so that
Voo : My(m) — M;(m).

Lemma 3.10. The function Vo, has the following properties:
(1). Vo is increasing (hence Vi is a nonlinear operator on M;(m)).
(11). Vo is continuous on the increasing sequences of Mj(m).
(iii). Vo is a sub-Markov operator from Mi(m) to M;(m).

Proof. The assertions (i). and (ii). are obvious.
(iii). Let f,g € M;(m), and a € (0,00) be such that f < g + «. Since for each n € N* L,, is
a sub-Markov operator we have that:

Va(nf) < Vp(ng) + a = Voo f = sup Vy(nf) < sup Vp(ng) + a = Veg + a.

neN* neN*
]
Theorem 3.11. We have the relation: Sy = S(V).
Proof. Obviously that Sy C S(V).
If s € L>®(m)NS(Vx), then s € () Sp. In view of Lemma 3.5:
n=1
VneN VpeN ,Vpe (0,n), S, CS,=s¢€ m Sp = Sy.
p€(0,00)
O
Corollary 3.12. If follows that: RV~ = RY.
Proof. The assertion is obvious. O

Definition 3.13. For all f,g € M;(m) we shall say that f is specific smaller than g will respect
to V iff f is specific smaller than g with respect to Voo. If f,g € Mi(m) are as above then we
shall denote this by f < g.

129



JOURNAL OF SCIENCE AND ARTS

Proposition 3.14 (a Mokobodzki type theorem). For all f € M;(m) and t € Sy. such that
f < t, we shall have that RV f < t.

Proof. Since RY = RV~ in view of Theorem 2.8 the assertion is obvious. O
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