JOURNAL OF SCIENCE AND ARTS

A MOKOBODZKI TYPE THEOREM

CORNELIU UDREA

Abstract

This work deals with the nonlinear potential theory actually with the corresponding specific order. Thus we shall propose a definition of the specific order ([3]) with respect to a nonlinear operator (respectively to a nonlinear resolvent) and afterwards, as in the linear case, we shall prove a Mokobodzki type theorem in the case of a nonlinear operator (respectively of a nonlinear resolvent).

1. Introduction

In this work $(\mathrm{E}, \Sigma, \mathrm{m})$ is a measure space (i.e. Σ is a σ-algebra of subsets of E and m is a complete measure on Σ). Moreover we suppose that m is a σ-finite measure. All functions are defined m-a. e. on E and all inequalities are accomplished m-a.e.. For all $f \in \overline{\mathbb{R}}^{E}$ we shall use the following standard notations:

$$
\begin{aligned}
& m_{\infty}(f):=\sup \{\alpha: \alpha \in \mathbb{R} \text { and } f \geq \alpha \text { m-a. e. }\} \\
& M_{\infty}(f):=-m_{\infty}(-f) \text { and }\|f\|_{\infty}:=M_{\infty}(|f|)
\end{aligned}
$$

We shall consider the following sets of functions on E :

$$
\begin{gathered}
\mathcal{M}(m):=\left\{f: f \in \overline{\mathbb{R}}^{E} \text { and } \mathrm{f} \text { is m-measurable function }\right\} \\
\mathcal{M}_{l}(m):=\left\{f: f \in \mathcal{M}(m) \text { and } m_{\infty}(f)>-\infty\right\} \\
\mathcal{M}^{+}(m):=\{f: f \in \mathcal{M}(m) \text { and } f \geq 0\} \\
L^{\infty}(m):=\left\{f: f \in \mathcal{M}(m) \text { and }\|f\|_{\infty}<\infty\right\}
\end{gathered}
$$

Throughout this work the symbols T, N will denote nonlinear increasing maps on $L^{\infty}(m)$ with values in $L^{\infty}(m)$ (they are called operators $([2])$) and such that T and N are continuous on the increasing sequences of $L^{\infty}(m)$ (we shall say that T, N are increasingly continuous). Moreover \bar{T} (respectively) \bar{N} will denote the natural extension of T (respectively N) to the set $\mathcal{M}_{l}(m)$, that is for all $f \in \mathcal{M}_{l}(m)$:

$$
\bar{T}(f)=\sup \left\{T g: g \in L^{\infty}(m) \text { and } g \leq f\right\}=\sup \{T(\inf (f, n)): n \in \mathbb{N}\}
$$

Obviously \bar{T} (and also \bar{N}) is increasingly continuous (on $\mathcal{M}_{l}(m)$).

2. The case of a nonlinear operators

For N an increasingly continuous operator on $L^{\infty}(m)$ we define the set of the N-supermedian functions, and a corresponding specific order for which we prove a Mokobodzki type theorem.

Definition 2.1. Let $u \in \mathcal{M}_{l}(m)$.
(i). The function u is called N-supermedian function iff $\bar{N} u \leq u$.
(ii). We shall use the following notation:

$$
\mathcal{S}_{N}=\mathcal{S}(N):=\left\{u \in \mathcal{M}_{l}(m): u \text { is a } N \text {-supermedian function }\right\}
$$

Research supported by NASR of Government of Romania: CEX-D11-23, 05.10.2005.

JOURNAL OF SCIENCE AND ARTS

Remark 2.2. (i). According to the definitions, if $u \in \mathcal{M}_{l}(m)$, then the following statements will be equivalent: (a). $u \in \mathcal{S}_{N}$. (b). $\forall g \in L^{\infty}(m)$ such that $g \leq u$ we have that $N g \leq u$. (c). $\forall n \in \mathbb{N}, N(\inf (u, n)) \leq u$.
(ii). If $N 0 \leq 0$, then $0 \in \mathcal{S}_{N}$. In another way we shall define the sequence

$$
f_{1}=0, f_{2}=\sup (0, N 0), \forall n \in \mathbb{N}, f_{n+1}=\sup \left(f_{n}, N f_{n}\right),
$$

and the function $r=\sup _{n \in \mathbb{N}} f_{n}$. It is obvious that $\bar{N} r \leq r$ and so that $r \in \mathcal{S}_{N}$. That being so we have that $\mathcal{S}_{N} \neq \emptyset$.
Proposition 2.3. We have the following assertions:
(i). Let $u \in \mathcal{S}_{N}$ and $f \in \mathcal{M}_{l}(m)$; it follows that: (a). $\bar{N} u \in \mathcal{S}_{N}$. (b). If $\bar{N} u \leq f \leq u$, then $f \in \mathcal{S}_{N}$.
(ii). Let $u_{n} \subset \mathcal{S}_{N}$. (a). If $\inf _{n \in N} u_{n} \in \mathcal{M}_{l}(m)$, then $\inf _{n \in N} u_{n} \in \mathcal{S}_{N}$. (b). If $\left(u_{n}\right)_{n}$ is increasing, then $\sup _{n \in N} u_{n} \in \mathcal{S}_{N}$.

Proof. They are obvious.
Remark 2.4. The following assertions are obvious:
(i). When N is a subadditive operator, we have that $\mathcal{S}_{N}+\mathcal{S}_{N} \subset \mathcal{S}_{N}$ (see [3] for a such nonlinear operator).
(ii). If N has the property:

$$
\forall u \in \mathcal{S}_{N} \text { and } f \in L^{\infty}(m), \bar{N}(f+u) \leq N f+u,
$$

then we shall find again that $\mathcal{S}_{N}+\mathcal{S}_{N} \subset \mathcal{S}_{N}$.
(iii). If N is a positive homogeneous map, then $\forall \alpha \in \mathbb{R}_{+}, \alpha \mathcal{S}_{N} \subset \mathcal{S}_{N}$.

Definition 2.5. For all $f \in \mathcal{M}_{l}(m)$ we define $R^{N} f:=\inf \left\{u \in \mathcal{S}_{N}: u \geq f\right\}$. The function $R^{N} f$ is called the \boldsymbol{N}-reduced function of f.
Proposition 2.6. For all $f \in \mathcal{M}_{l}(m)$ we have the following assertions:
(i). The map $R^{N} f$ is N-supermedian function.
(ii). $R^{N} f=\sup \left(f, \bar{N}\left(R^{N} f\right)\right)$.
(iii). The map $R^{N}: \mathcal{M}_{l}(m) \rightarrow \mathcal{S}_{N}$ is an operator which is increasingly continuous.

Proof. It is similar to the linear case ([1]).
(i). We define the sequence: $f_{1}:=f, f_{n+1}:=\sup \left(f_{n}, \bar{N} f_{n}\right), \forall n \in \mathbb{N}^{*}$ and the map $r:=$ $\sup _{n \in \mathbb{N}} f_{n} \in \mathcal{M}_{l}(m)$. According to the definitions: $n \in \mathbb{N}$

$$
\forall n \in \mathbb{N}^{*}, f_{n} \leq f_{n+1}, \bar{N} f_{n} \leq f_{n+1} \text { and } f \leq r .
$$

Therefore

$$
\bar{N} r=\sup \bar{N} f_{n} \leq \sup f_{n+1}=r, r \in \mathcal{S}_{N} \text { and } R^{N} f \leq r .
$$

If $s \in \mathcal{S}_{N}$ is such that $f \leq s$ then for all $n \in N^{*}, f_{n} \leq s$ and $r \leq s$ that is $r=R^{N} f \in \mathcal{S}_{N}$.
(ii). We have that $\bar{N}\left(R^{N} f\right) \leq \sup \left(f, \bar{N}\left(R^{N} f\right)\right) \leq R^{N} f$, hence
$\sup ^{N}\left(f, \bar{N}\left(R^{N} f\right)\right) \in \mathcal{S}_{N}$. Since $f \leq \sup \left(f, \bar{N}\left(R^{N} f\right)\right)$, we shall find that $R^{N} f \leq \sup \left(f, \bar{N}\left(R^{N} f\right)\right) \leq$ $R^{N} f$.
(iii). Obviously R^{N} is an increasing map on $\mathcal{M}_{l}(m)$. If $\left(f_{n}\right)_{n} \subset \mathcal{M}_{l}(m)$ is an increasing sequence then

$$
\begin{aligned}
& \sup _{n \in \mathbb{N}} R^{N} f_{n} \leq R^{N}\left(\sup _{n \in \mathbb{N}} f_{n}\right) \text { and } f_{n} \leq R^{N} f_{n}, \forall n \in \mathbb{N} \text {. Therefore } \\
& \sup _{n \in \mathbb{N}} f_{n} \leq \sup _{n \in \mathbb{N}} R^{N} f_{n} \text { and, since } \sup _{n \in \mathbb{N}} R^{N} f_{n} \in \mathcal{S}_{N} \text {, we have that }
\end{aligned}
$$

JOURNAL OF SCIENCE AND ARTS

$$
R^{N}\left(\sup _{n \in \mathbb{N}} f_{n}\right) \leq \sup _{n \in \mathbb{N}} R^{N} f_{n}
$$

Definition 2.7. (i). For all $f, g \in \mathcal{M}_{l}(m)$ we shall denote $f \ll g$ iff $f \leq g$ and $f+\bar{N} g \leq g+\bar{N} f$.
(ii). It is immediate that the relation \ll defines an order relation on the space $L^{\infty}(m)$ which is called the specific order with respect to N.

Theorem 2.8 (a Mokobodzki type theorem). For all $f \in \mathcal{M}_{l}(m)$ and $t \in \mathcal{S}_{N}$ such that $f \ll t$, we shall have that $R^{N} f \ll t$.

Proof. If $\left(f_{n}\right)_{n \in N}$ is the sequence which is defined in the proof of the Proposition 6, then we shall prove that, for all $n \in \mathbb{N}, f_{n} \ll t$. It is obvious that $f_{1} \ll t$ and if $f_{n} \ll t$ we shall have the inequalities: $f_{n}+\bar{N} t \leq t+\bar{N} f_{n}$, and $f_{n} \leq t$. Since N is an increasing map we find that $f_{n+1} \leq t$, hence:

$$
f_{n+1}+\bar{N} t=\sup \left(f_{n}, \bar{N} f_{n}\right)+\bar{N} t \leq \sup \left(t+\bar{N} f_{n}, \bar{N} f_{n}+\bar{N} t\right)=t+\bar{N} f_{n} \leq t+\bar{N} f_{n+1} ;
$$

therefore $f_{n+1} \ll t$.
Moreover we remark that $f_{n}+\bar{N} t \leq t+\bar{N}\left(R^{N} f\right)$, for all $n \in \mathbb{N}^{*}$, and so that $R^{N} f+\bar{N} t \leq$ $t+\bar{N}\left(R^{N} f\right)$. Since it is obvious that $R^{N} f \leq t$, we have that $R^{N} f \ll t$.

Definition 2.9. (i).If (T, N) is pair of operators such that

$$
(I-N)(I+T)=I=(I+T)(I-N),
$$

then (T, N) is called a pair of conjugated operators (where I is the identity map of $\left.L^{\infty}(m)\right)($ in conformity with [2], [3] or [5]).
(ii). The pair (T, N) is a pair of conjugated operators if and only if

$$
T(I-N)=N \text { and } N(I+T)=T .
$$

Remark 2.10. Let (T, N) be a pair of conjugated operators.
(i). If $f, g \in L^{\infty}(m)$ are such that $f+N g \leq g+N f$, then $f \ll g$ since from inequality $f-N f \leq g-N g$ we have that $f=(I+T)(f-N f) \leq(I+T)(g-N g)=g$.
(ii). For all $f \in \mathcal{M}_{l}(m)$ such that $f \geq 0$ we have that $T f \in \mathcal{S}_{N}$.
(iii). Obviously, $T 0=0$ if and only if $N 0=0$.
(iv). Let $\widetilde{T}, \widetilde{N}: \widetilde{N}: L^{\infty}(m) \rightarrow L^{\infty}(m)$ be defined by $\widetilde{T} f=T f-T 0$, respectively $\widetilde{N} f=N(f+T 0)-$ T0. Then $(\widetilde{T}, \widetilde{N})$ is a pair of conjugated operators and: (a). $\widetilde{N} 0=\widetilde{T} 0=0$. (b). $\mathcal{S}_{\widetilde{N}}=\mathcal{S}_{N}-T 0$.

Definition 2.11. N is called a sub-Markov operator on $L^{\infty}(m)$ iff for all $f, g \in L^{\infty}(m)$ we have that

$$
\|N f-N g\|_{\infty} \leq\|f-g\|_{\infty}
$$

Remark 2.12. (i). It is obvious that $N: L^{\infty}(m) \rightarrow L^{\infty}(m)$ is a sub-Markov operator if and only if

$$
\forall f, g \in L^{\infty}(m), \forall \alpha \in(0, \infty), f \leq g+\alpha \Rightarrow N f \leq N g+\alpha
$$

(ii). Suppose that (T, N) is a pair of conjugated operators on $L^{\infty}(m)$ such that N is a subMarkov one. Then
(a). $T 0+\mathbb{R}_{+} \subset \mathcal{S}_{N}$.
(b). If for each $n \in \mathbb{N}^{\star}, e_{n}:=n+T 0$ then $\left(e_{n}\right)_{n \in \mathbb{N}^{\star}} \subset \mathcal{S}_{N}$ and $\lim _{n \rightarrow \infty} e_{n}=\infty$ (m-a.e.)

JOURNAL OF SCIENCE AND ARTS

3. The case of a nonlinear resolvent

Throughout this section, for all $p \in[0, \infty), V_{p}: L^{\infty}(m) \rightarrow L^{\infty}(m)$ is a nonlinear increasingly continuous operator.

Definition 3.1. (see [2] and also [3], [5] or [6]).
(i). $\mathcal{V}:=\left(V_{p}\right)_{p \in(0, \infty)}$ is called (nonlinear) resolvent (on $L^{\infty}(m)$) iff for all $p, q \in(0, \infty)$ we have that:

$$
\left(I-(p-q) V_{p}\right)\left(I+(p-q) V_{q}\right)=I
$$

(ii). If, for all $p \in(0, \infty)$,

$$
\left(I-p V_{p}\right)\left(I+p V_{0}\right)=I=\left(I+p V_{0}\right)\left(I-p V_{p}\right)
$$

then either V_{0} will be called the initial operator of the resolvent \mathcal{V}, or \mathcal{V} will be called the resolvent associated with V_{0}.
(iii). The resolvent \mathcal{V} is called a sub-Markov resolvent if, for all $p \in(0, \infty), p V_{p}$ is a sub-Markov operator on $L^{\infty}(m)$.

Remark 3.2. (i). The equalities of the resolvent's definition are equivalent to the sentence: for all $p, q \in(0, \infty),\left((p-q) V_{q},(p-q) V_{p}\right)$ is a pair of conjugated operators (on $L^{\infty}(m)$) and so that to the relation:

$$
V_{p}=V_{q}\left(I+(q-p) V_{p}\right), \forall p, q \in(0, \infty)
$$

(ii). Similarly the property: V_{0} is the initial operator of the resolvent \mathcal{V} means that, for all $p \in(0, \infty),\left(p V_{0}, p V_{p}\right)$ is a pair of conjugated operators on $L^{\infty}(m)$ and so that, for all $p \in(0, \infty)$, we have the following relations:

$$
V_{0}=V_{p}\left(I+p V_{0}\right) \text { and } V_{p}=V_{0}\left(I-p V_{p} .\right)
$$

Throughout this section we shall consider $\mathcal{V}=\left(V_{p}\right)_{p \in(0, \infty)}$ a sub-Markov resolvent associated with the operator $V_{0}\left(\right.$ on $\left.L^{\infty}(m)\right)$, while V_{p} is defined on $\mathcal{M}_{l}(m)$ with values in $\mathcal{M}_{l}(m)$ (for all $p \in[0, \infty)$).
Definition 3.3. For all $p \in(0, \infty)$, we shall denote $L_{p}: \mathcal{M}_{l}(m) \rightarrow \mathcal{M}_{l}(m)$ the operator $L_{p} f:=V_{p}(p f)$ and $\mathcal{S}_{p}:=\mathcal{S}_{L_{p}}$.

All functions $u \in \bigcap_{p \in(0, \infty)} \mathcal{S}_{p}$ are called \mathcal{V}-supermedian functions and $\mathcal{S}_{\mathcal{V}}:=\mathcal{S}(\mathcal{V}):=$ $\bigcap_{p \in(0, \infty)} \mathcal{S}_{p}$.

Remark 3.4. (i) We have that: $u \in \mathcal{S}_{\mathcal{V}}$ if and only if, for all

$$
p \in(0, \infty), V_{p}(p u) \leq u
$$

Moreover, for all $u \in \mathcal{S}_{\mathcal{V}}, V_{0} 0 \leq u$ and for all $f \in \mathcal{M}_{l}(m)$ such that $f \geq 0$ we have that $V_{0} f \in \mathcal{S}_{\mathcal{V}}$.
(ii). We shall define, for all $n \in \mathbb{N}, e_{n}:=n+V_{0} 0$ and we shall have an increasing sequence $\left(e_{n}\right)_{n \in N}$ such that $e_{n} \in \mathcal{S}_{\mathcal{V}}$ (Remark 2.12 (ii)) and $\lim _{n \rightarrow \infty} e_{n}=\infty, m-$ a.e. on E.
(iii). By the definition $u \in \mathcal{M}_{l}(m)$ is \mathcal{V}-supermedian function if and only if for all $g \in$ $L^{\infty}, g \leq u$ we have that $V_{p}(p g) \leq u$ and the last assertion is equivalent to the sentence: for all $n \in \mathbb{N}, V_{p}(p \inf (n, u)) \leq u, \forall p \in(0, \infty)$.
Lemma 3.5. We have the following assertions
(i). For all $p, q \in(0, \infty)$ such that $p<q$ it will result that: (a). For all $u \in \mathcal{S}_{q}, V_{p}(p u) \leq$ $V_{q}(q u) .(b) . \mathcal{S}_{q} \subset \mathcal{S}_{p}$.
(ii). For all $u \in \mathcal{S}_{\mathcal{V}}$, the function $\left(p \mapsto V_{p}(p u)\right):(0, \infty) \rightarrow \mathcal{M}_{l}(m)$ is increasing.
(iii). Let $\left(u_{n}\right)_{n} \subset \mathcal{S}_{\mathcal{V}}$. (a). If $\inf _{n \in \mathbb{N}^{\star}} u_{n} \in \mathcal{M}_{l}(m)$, then $\inf _{n \in \mathbb{N}^{\star}} u_{n} \in \mathcal{S}_{\mathcal{V}}$. (b). If $\left(u_{n}\right)_{n}$ is increasing, then $\sup _{n \in \mathbb{N}^{\star}} u_{n} \in \mathcal{S}_{\mathcal{V}}$.

JOURNAL OF SCIENCE AND ARTS

Proof. Obviously.
Definition 3.6. (i). Let $f \in \mathcal{M}_{l}(m)$. The map $\inf \left\{u: u \in \mathcal{S}_{\mathcal{V}}\right.$ and $\left.u \geq f\right\}$ is called the $\mathcal{S}_{\mathcal{V}}$-reduced function of \boldsymbol{f} and it is denoted by $R^{v} f:=R f$.
(ii). It is obvious that, for all $p \in(0, \infty), f \leq R^{L_{p}} f \leq R f, \forall f \in \mathcal{M}_{l}(m)$ (where L_{p} is the operator from Definition 3).
(iii). Moreover, for all $f \in \mathcal{M}_{l}(m)$ we have that $R f=R\left(\sup \left(f, V_{0} 0\right)\right)$.

Proposition 3.7. For all $f \in \mathcal{M}_{l}(m)$ we have that $R f \in \mathcal{S}_{\mathcal{V}}$.
Proof. According to the Lemma 5,for all $p, q \in(0, \infty), p<q$ we have that $R^{L_{p}} f \leq R^{L_{q}} f$ and by the Proposition 2.6 (i), $R^{L_{p}} f \in \mathcal{S}_{p}$.

Let $u:=\sup _{p \in(0, \infty)} R^{L_{p}} f$, since $R^{L_{q}} f \in \mathcal{S}_{p}$ provided that $p<q$ we have that

$$
V_{p}\left(p R^{L_{q}} f\right) \leq R^{L_{q}} f \leq u
$$

and so that $V_{p}(p u)=\sup _{q \in(0, \infty)} V_{p}\left(p R^{L_{q}} f\right) \leq \sup _{q \in(0, \infty)} R^{L_{q}} f=u, \forall p \in(0, \infty)$. Therefore $u \in \mathcal{S}_{\mathcal{V}}$.
Obviously, $f \leq u$ and, if $s \in \mathcal{S}_{\mathcal{V}}$ is such that $f \leq s$, we shall have that $R^{L_{p}} f \leq s$ for all $p \in(0, \infty)$ and $u \leq s$. Therefore $u=R f \in \mathcal{S}_{\mathcal{V}}$.

Definition 3.8. For each $f \in \mathcal{M}_{l}(m)$ we define

$$
V_{\infty} f:=\sup _{n \in \mathbb{N}^{\star}} V_{n}(n f) .
$$

Remark 3.9. Obviously $V_{\infty} f \in \mathcal{M}_{l}(m), \forall f \in \mathcal{M}_{l}(m)$, so that $V_{\infty}: \mathcal{M}_{l}(m) \rightarrow \mathcal{M}_{l}(m)$.
Lemma 3.10. The function V_{∞} has the following properties:
(i). V_{∞} is increasing (hence V_{∞} is a nonlinear operator on $\mathcal{M}_{l}(m)$).
(ii). V_{∞} is continuous on the increasing sequences of $\mathcal{M}_{l}(m)$.
(iii). V_{∞} is a sub-Markov operator from $\mathcal{M}_{l}(m)$ to $\mathcal{M}_{l}(m)$.

Proof. The assertions (i). and (ii). are obvious.
(iii). Let $f, g \in \mathcal{M}_{l}(m)$, and $\alpha \in(0, \infty)$ be such that $f \leq g+\alpha$. Since for each $n \in \mathbb{N}^{\star} L_{n}$ is a sub-Markov operator we have that:

$$
V_{n}(n f) \leq V_{n}(n g)+\alpha \Rightarrow V_{\infty} f=\sup _{n \in \mathbb{N}^{\star}} V_{n}(n f) \leq \sup _{n \in \mathbb{N}^{\star}} V_{n}(n g)+\alpha=V_{\infty} g+\alpha
$$

Theorem 3.11. We have the relation: $\mathcal{S}_{\mathcal{V}}=\mathcal{S}\left(V_{\infty}\right)$.
Proof. Obviously that $\mathcal{S}_{\mathcal{V}} \subset \mathcal{S}\left(V_{\infty}\right)$.
If $s \in L^{\infty}(m) \cap \mathcal{S}\left(V_{\infty}\right)$, then $s \in \bigcap_{n=1}^{\infty} \mathcal{S}_{n}$. In view of Lemma 3.5:

$$
\forall n \in \mathbb{N}^{\star}, \forall p \in \mathbb{N}^{\star}, \forall p \in(0, n), \mathcal{S}_{n} \subset \mathcal{S}_{p} \Rightarrow s \in \bigcap_{p \in(0, \infty)} \mathcal{S}_{p}=\mathcal{S}_{\mathcal{V}}
$$

Corollary 3.12. If follows that: $R^{V \infty}=R^{\mathcal{V}}$.
Proof. The assertion is obvious.
Definition 3.13. For all $f, g \in \mathcal{M}_{l}(m)$ we shall say that f is specific smaller than g will respect to \mathcal{V} iff f is specific smaller than g with respect to V_{∞}. If $f, g \in \mathcal{M}_{l}(m)$ are as above then we shall denote this by $f \ll g$.

JOURNAL OF SCIENCE AND ARTS

Proposition 3.14 (a Mokobodzki type theorem). For all $f \in \mathcal{M}_{l}(m)$ and $t \in \mathcal{S}_{\mathcal{V}}$. such that $f \ll t$, we shall have that $R^{\mathcal{V}} f \ll t$.
Proof. Since $R^{\mathcal{V}}=R^{V_{\infty}}$ in view of Theorem 2.8 the assertion is obvious.

References

[1] Boboc, N., Bucur, Gh. and Cornea A., Order and Convexity in Potential Theory: H-Cones., Lect. Notes in Math. 853, Springer, Berlin, 1981.
[2] Dellacherie, C., Une version non linéaire du théorème de Hunt., Proc. of I.C.P.T. 90, Nagoya, 25-40, 1992.
[3] Udrea, C., Nonlinear Resolvents., Rev. Roum. de Math. Pures et Appl. XL, 691-712, 1995.
[4] Udrea, C., Supermedian Functions with Respect to a Nonlinear Resolvent, Math. Rep., Ed. Acad. Rom., 49, 285-297, 1997.
[5] Udrea C., Resolvents and Nonlinear Potential Theory., New Trends in Potential Theory ©Theta, 163-173, 2005.
[6] Yazidi,M., Sur les résolvantes non linéaire., Math. Rep., Tom. 50, No. 5-6, 445-454, 1998.
Department of Mathematics, University of Pitestit,
Str. Târgu din Vale, 110040 Piteşti, Romania
E-mail address: corneliu_udrea@yahoo.com

