A MOKOBODZKI TYPE THEOREM

CORNELIU UDREA

ABSTRACT. This work deals with the nonlinear potential theory actually with the corresponding specific order. Thus we shall propose a definition of the specific order ([3]) with respect to a nonlinear operator (respectively to a nonlinear resolvent) and afterwards, as in the linear case, we shall prove a Mokobodzki type theorem in the case of a nonlinear operator (respectively of a nonlinear resolvent).

1. INTRODUCTION

In this work (E, Σ, m) is a measure space (i.e. Σ is a σ -algebra of subsets of E and m is a complete measure on Σ). Moreover we suppose that m is a σ -finite measure. All functions are defined m-a. e. on E and all inequalities are accomplished m-a.e.. For all $f \in \mathbb{R}^E$ we shall use the following standard notations:

$$m_{\infty}(f) := \sup\{\alpha : \alpha \in \mathbb{R} \text{ and } f \ge \alpha \text{ m-a. e.}\},\$$

$$M_{\infty}(f) := -m_{\infty}(-f) \text{ and } ||f||_{\infty} := M_{\infty}(|f|)$$

We shall consider the following sets of functions on E:

$$\mathcal{M}(m) := \{ f : f \in \overline{\mathbb{R}}^E \text{ and } f \text{ is m-measurable function} \},$$
$$\mathcal{M}_l(m) := \{ f : f \in \mathcal{M}(m) \text{ and } m_{\infty}(f) > -\infty \},$$
$$\mathcal{M}^+(m) := \{ f : f \in \mathcal{M}(m) \text{ and } f \ge 0 \},$$
$$L^{\infty}(m) := \{ f : f \in \mathcal{M}(m) \text{ and } \|f\|_{\infty} < \infty \}.$$

Throughout this work the symbols T, N will denote nonlinear increasing maps on $L^{\infty}(m)$ with values in $L^{\infty}(m)$ (they are called operators ([2])) and such that T and N are continuous on the increasing sequences of $L^{\infty}(m)$ (we shall say that T, N are increasingly continuous). Moreover \overline{T} (respectively) \overline{N} will denote the natural extension of T (respectively N) to the set $\mathcal{M}_l(m)$, that is for all $f \in \mathcal{M}_l(m)$:

$$\overline{T}(f) = \sup\{Tg : g \in L^{\infty}(m) \text{ and } g \leq f\} = \sup\{T(\inf(f, n)) : n \in \mathbb{N}\}.$$

Obviously \overline{T} (and also \overline{N}) is increasingly continuous (on $\mathcal{M}_l(m)$).

2. The case of a nonlinear operators

For N an increasingly continuous operator on $L^{\infty}(m)$ we define the set of the N-supermedian functions, and a corresponding specific order for which we prove a Mokobodzki type theorem.

Definition 2.1. Let $u \in \mathcal{M}_l(m)$.

(i). The function u is called N-supermedian function iff $\overline{N}u \leq u$.

(ii). We shall use the following notation:

 $S_N = S(N) := \{ u \in \mathcal{M}_l(m) : u \text{ is a N-supermedian function } \}.$

Research supported by NASR of Government of Romania: CEX-D11-23, 05.10.2005.

Remark 2.2. (i). According to the definitions, if $u \in \mathcal{M}_l(m)$, then the following statements will be equivalent: (a). $u \in \mathcal{S}_N$. (b). $\forall g \in L^{\infty}(m)$ such that $g \leq u$ we have that $Ng \leq u$. (c). $\forall n \in \mathbb{N}, N(\inf(u, n)) \leq u$.

(ii). If $N0 \leq 0$, then $0 \in S_N$. In another way we shall define the sequence

$$f_1 = 0, f_2 = \sup(0, N0), \forall n \in \mathbb{N}, f_{n+1} = \sup(f_n, Nf_n),$$

and the function $r = \sup_{n \in \mathbb{N}} f_n$. It is obvious that $\overline{N}r \leq r$ and so that $r \in S_N$. That being so we have that $S_N \neq \emptyset$.

Proposition 2.3. We have the following assertions:

(i). Let $u \in S_N$ and $f \in \mathcal{M}_l(m)$; it follows that: (a). $\overline{N}u \in S_N$. (b). If $\overline{N}u \leq f \leq u$, then $f \in S_N$.

(ii). Let $u_n \subset S_N$. (a). If $\inf_{n \in N} u_n \in \mathcal{M}_l(m)$, then $\inf_{n \in N} u_n \in S_N$. (b). If $(u_n)_n$ is increasing, then $\sup u_n \in S_N$.

 $n \in \mathbb{N}$

Proof. They are obvious.

Remark 2.4. The following assertions are obvious:

(i). When N is a subadditive operator, we have that $S_N + S_N \subset S_N$ (see [3] for a such nonlinear operator).

(ii). If N has the property:

 $\forall u \in S_N \text{ and } f \in L^{\infty}(m), \ \overline{N}(f+u) \leq Nf+u,$

then we shall find again that $S_N + S_N \subset S_N$.

(iii). If N is a positive homogeneous map, then $\forall \alpha \in \mathbb{R}_+, \alpha S_N \subset S_N$.

Definition 2.5. For all $f \in \mathcal{M}_l(m)$ we define $R^N f := \inf\{u \in \mathcal{S}_N : u \ge f\}$. The function $R^N f$ is called the **N-reduced function** of f.

Proposition 2.6. For all $f \in \mathcal{M}_l(m)$ we have the following assertions:

- (i). The map $R^N f$ is N-supermedian function.
- (*ii*). $R^N f = \sup(f, \overline{N}(R^N f)).$
- (iii). The map $\mathbb{R}^N : \mathcal{M}_l(m) \to \mathcal{S}_N$ is an operator which is increasingly continuous.

Proof. It is similar to the linear case ([1]).

(i). We define the sequence: $f_1 := f, f_{n+1} := \sup(f_n, \overline{N}f_n), \forall n \in \mathbb{N}^*$ and the map $r := \sup_{n \in \mathbb{N}} f_n \in \mathcal{M}_l(m)$. According to the definitions:

$$\forall n \in \mathbb{N}^*, f_n \leq f_{n+1}, Nf_n \leq f_{n+1} \text{ and } f \leq r.$$

Therefore

$$\overline{N}r = \sup \overline{N}f_n \leq \sup f_{n+1} = r, r \in \mathcal{S}_N \text{ and } R^N f \leq r$$

If $s \in \mathcal{S}_N$ is such that $f \leq s$ then for all $n \in N^*$, $f_n \leq s$ and $r \leq s$ that is $r = R^N f \in \mathcal{S}_N$. (ii). We have that $\overline{N}(R^N f) \leq \sup(f, \overline{N}(R^N f)) \leq R^N f$, hence

 $\sup(f, \overline{N}(R^N f)) \in \mathcal{S}_N$. Since $f \leq \sup(f, \overline{N}(R^N f))$, we shall find that $R^N f \leq \sup(f, \overline{N}(R^N f)) \leq R^N f$.

(iii). Obviously \mathbb{R}^N is an increasing map on $\mathcal{M}_l(m)$. If $(f_n)_n \subset \mathcal{M}_l(m)$ is an increasing sequence then

$$\sup_{n \in \mathbb{N}} R^N f_n \leq R^N (\sup_{n \in \mathbb{N}} f_n) \text{ and } f_n \leq R^N f_n, \forall n \in \mathbb{N}. \text{Therefore}$$
$$\sup_{n \in \mathbb{N}} f_n \leq \sup_{n \in \mathbb{N}} R^N f_n \text{ and, since } \sup_{n \in \mathbb{N}} R^N f_n \in \mathcal{S}_N, \text{ we have that}$$

$$R^{N}(\sup_{n\in\mathbb{N}}f_{n})\leq \sup_{n\in\mathbb{N}}R^{N}f_{n}.$$

Definition 2.7. (i). For all $f, g \in \mathcal{M}_l(m)$ we shall denote $f \ll g$ iff $f \leq g$ and $f + \overline{N}g \leq g + \overline{N}f$. (ii). It is immediate that the relation \ll defines an order relation on the space $L^{\infty}(m)$ which is called the specific order with respect to N.

Theorem 2.8 (a Mokobodzki type theorem). For all $f \in \mathcal{M}_l(m)$ and $t \in \mathcal{S}_N$ such that $f \ll t$, we shall have that $R^N f \ll t$.

Proof. If $(f_n)_{n \in \mathbb{N}}$ is the sequence which is defined in the proof of the Proposition 6, then we shall prove that, for all $n \in \mathbb{N}$, $f_n \ll t$. It is obvious that $f_1 \ll t$ and if $f_n \ll t$ we shall have the inequalities: $f_n + \overline{N}t \leq t + \overline{N}f_n$, and $f_n \leq t$. Since N is an increasing map we find that $f_{n+1} \leq t$, hence:

$$f_{n+1} + \overline{N}t = \sup(f_n, \overline{N}f_n) + \overline{N}t \le \sup(t + \overline{N}f_n, \overline{N}f_n + \overline{N}t) = t + \overline{N}f_n \le t + \overline{N}f_{n+1};$$

therefore $f_{n+1} \ll t$.

Moreover we remark that $f_n + \overline{N}t \leq t + \overline{N}(R^N f)$, for all $n \in \mathbb{N}^*$, and so that $R^N f + \overline{N}t \leq t + \overline{N}(R^N f)$. Since it is obvious that $R^N f \leq t$, we have that $R^N f \ll t$.

Definition 2.9. (i). If (T,N) is pair of operators such that

$$(I - N)(I + T) = I = (I + T)(I - N),$$

then (T,N) is called a **pair of conjugated operators** (where I is the identity map of $L^{\infty}(m)$)(in conformity with [2], [3] or [5]).

(ii). The pair (T,N) is a pair of conjugated operators if and only if

$$T(I-N) = N$$
 and $N(I+T) = T$.

Remark 2.10. Let (T,N) be a pair of conjugated operators.

(i). If $f,g \in L^{\infty}(m)$ are such that $f + Ng \leq g + Nf$, then $f \ll g$ since from inequality $f - Nf \leq g - Ng$ we have that $f = (I + T)(f - Nf) \leq (I + T)(g - Ng) = g$.

(ii). For all $f \in \mathcal{M}_l(m)$ such that $f \ge 0$ we have that $Tf \in \mathcal{S}_N$.

(iii). Obviously, T0 = 0 if and only if N0=0.

(iv). Let $\widetilde{T}, \widetilde{N} : L^{\infty}(m) \to L^{\infty}(m)$ be defined by $\widetilde{T}f = Tf - T0$, respectively $\widetilde{N}f = N(f+T0) - T0$. Then $(\widetilde{T}, \widetilde{N})$ is a pair of conjugated operators and: (a). $\widetilde{N}0 = \widetilde{T}0 = 0$. (b). $S_{\widetilde{N}} = S_N - T0$.

Definition 2.11. N is called a sub-Markov operator on $L^{\infty}(m)$ iff for all $f, g \in L^{\infty}(m)$ we have that

$$||Nf - Ng||_{\infty} \le ||f - g||_{\infty}.$$

Remark 2.12. (i). It is obvious that $N : L^{\infty}(m) \to L^{\infty}(m)$ is a sub-Markov operator if and only if

$$\forall f, g \in L^{\infty}(m), \forall \alpha \in (0, \infty), f \leq g + \alpha \Rightarrow Nf \leq Ng + \alpha.$$

(ii). Suppose that (T, N) is a pair of conjugated operators on $L^{\infty}(m)$ such that N is a sub-Markov one. Then

(a). $T0 + \mathbb{R}_+ \subset \mathcal{S}_N$.

(b). If for each $n \in \mathbb{N}^*$, $e_n := n + T0$ then $(e_n)_{n \in \mathbb{N}^*} \subset \mathcal{S}_N$ and $\lim e_n = \infty (m\text{-}a.e.)$

3. The case of a nonlinear resolvent

Throughout this section, for all $p \in [0, \infty), V_p : L^{\infty}(m) \to L^{\infty}(m)$ is a nonlinear increasingly continuous operator.

Definition 3.1. (see [2] and also [3], [5] or [6]).

(i). $\mathcal{V} := (V_p)_{p \in (0,\infty)}$ is called (nonlinear) resolvent (on $L^{\infty}(m)$) iff for all $p, q \in (0,\infty)$ we have that:

$$(I - (p - q)V_p)(I + (p - q)V_q) = I.$$

(ii). If, for all $p \in (0, \infty)$,

$$(I - pV_p)(I + pV_0) = I = (I + pV_0)(I - pV_p),$$

then either V_0 will be called **the initial operator** of the resolvent \mathcal{V} , or \mathcal{V} will be called **the** resolvent associated with V_0 .

(iii). The resolvent \mathcal{V} is called a **sub-Markov resolvent** if, for all $p \in (0,\infty), pV_p$ is a sub-Markov operator on $L^{\infty}(m)$.

Remark 3.2. (i). The equalities of the resolvent's definition are equivalent to the sentence: for all $p, q \in (0, \infty)$, $((p-q)V_q, (p-q)V_p)$ is a pair of conjugated operators (on $L^{\infty}(m)$) and so that to the relation:

$$V_p = V_q (I + (q - p)V_p), \forall p, q \in (0, \infty).$$

(ii). Similarly the property: V_0 is the initial operator of the resolvent \mathcal{V} means that, for all $p \in (0, \infty), (pV_0, pV_p)$ is a pair of conjugated operators on $L^{\infty}(m)$ and so that, for all $p \in (0, \infty)$, we have the following relations:

$$V_0 = V_p(I + pV_0)$$
 and $V_p = V_0(I - pV_p)$.

Throughout this section we shall consider $\mathcal{V} = (V_p)_{p \in (0,\infty)}$ a sub-Markov resolvent associated with the operator V_0 (on $L^{\infty}(m)$), while V_p is defined on $\mathcal{M}_l(m)$ with values in $\mathcal{M}_l(m)$ (for all $p \in [0,\infty)$).

Definition 3.3. For all $p \in (0, \infty)$, we shall denote $L_p : \mathcal{M}_l(m) \to \mathcal{M}_l(m)$ the operator $L_p f := V_p(pf)$ and $\mathcal{S}_p := \mathcal{S}_{L_p}$.

All functions $u \in \bigcap_{p \in (0,\infty)} S_p$ are called \mathcal{V} -supermedian functions and $S_{\mathcal{V}} := S(\mathcal{V}) :=$

 $\bigcap_{p\in(0,\infty)}\mathcal{S}_p.$

Remark 3.4. (i) We have that: $u \in S_{\mathcal{V}}$ if and only if, for all

$$p \in (0, \infty), V_p(pu) \le u.$$

Moreover, for all $u \in S_{\mathcal{V}}, V_0 0 \leq u$ and for all $f \in \mathcal{M}_l(m)$ such that $f \geq 0$ we have that $V_0 f \in S_{\mathcal{V}}$. (ii). We shall define, for all $n \in \mathbb{N}, e_n := n + V_0 0$ and we shall have an increasing sequence

 $(e_n)_{n\in\mathbb{N}}$ such that $e_n\in\mathcal{S}_{\mathcal{V}}$ (Remark 2.12 (ii)) and $\lim_{n\to\infty}e_n=\infty, m-a.e.$ on E.

(iii). By the definition $u \in \mathcal{M}_l(m)$ is \mathcal{V} -supermedian function if and only if for all $g \in L^{\infty}, g \leq u$ we have that $V_p(pg) \leq u$ and the last assertion is equivalent to the sentence: for all $n \in \mathbb{N}, V_p(p \inf(n, u)) \leq u, \forall p \in (0, \infty)$.

Lemma 3.5. We have the following assertions

(i). For all $p, q \in (0, \infty)$ such that p < q it will result that: (a). For all $u \in S_q$, $V_p(pu) \leq V_q(qu)$. (b). $S_q \subset S_p$.

(ii). For all $u \in S_{\mathcal{V}}$, the function $(p \mapsto V_p(pu)) : (0, \infty) \to \mathcal{M}_l(m)$ is increasing.

(iii). Let $(u_n)_n \subset S_{\mathcal{V}}$. (a). If $\inf_{n \in \mathbb{N}^*} u_n \in \mathcal{M}_l(m)$, then $\inf_{n \in \mathbb{N}^*} u_n \in S_{\mathcal{V}}$. (b). If $(u_n)_n$ is increasing, then $\sup u_n \in S_{\mathcal{V}}$.

 $\substack{n \in \mathbb{N}^*}{n \in \mathbb{N}^*}$

Proof. Obviously.

Definition 3.6. (i). Let $f \in \mathcal{M}_l(m)$. The map $inf\{u : u \in S_{\mathcal{V}} and u \ge f\}$ is called the $S_{\mathcal{V}}$ -reduced function of f and it is denoted by $R^v f := Rf$.

(ii). It is obvious that, for all $p \in (0,\infty)$, $f \leq R^{L_p} f \leq Rf$, $\forall f \in \mathcal{M}_l(m)$ (where L_p is the operator from Definition 3).

(iii). Moreover, for all $f \in \mathcal{M}_l(m)$ we have that $Rf = R(\sup(f, V_0 0))$.

Proposition 3.7. For all $f \in \mathcal{M}_l(m)$ we have that $Rf \in \mathcal{S}_{\mathcal{V}}$.

Proof. According to the Lemma 5, for all $p, q \in (0, \infty)$, p < q we have that $R^{L_p} f \leq R^{L_q} f$ and by the Proposition 2.6 (i), $R^{L_p} f \in S_p$.

Let $u := \sup_{p \in (0,\infty)} R^{L_p} f$, since $R^{L_q} f \in \mathcal{S}_p$ provided that p < q we have that

$$V_p(pR^{L_q}f) \le R^{L_q}f \le u$$

and so that $V_p(pu) = \sup_{q \in (0,\infty)} V_p(pR^{L_q}f) \le \sup_{q \in (0,\infty)} R^{L_q}f = u, \forall p \in (0,\infty).$ Therefore $u \in \mathcal{S}_{\mathcal{V}}$.

Obviously, $f \leq u$ and, if $s \in S_{\mathcal{V}}$ is such that $f \leq s$, we shall have that $R^{L_p}f \leq s$ for all $p \in (0, \infty)$ and $u \leq s$. Therefore $u = Rf \in S_{\mathcal{V}}$.

Definition 3.8. For each $f \in \mathcal{M}_l(m)$ we define

$$V_{\infty}f := \sup_{n \in \mathbb{N}^{\star}} V_n(nf).$$

Remark 3.9. Obviously $V_{\infty}f \in \mathcal{M}_l(m)$, $\forall f \in \mathcal{M}_l(m)$, so that $V_{\infty} : \mathcal{M}_l(m) \to \mathcal{M}_l(m)$.

Lemma 3.10. The function V_{∞} has the following properties:

(i). V_{∞} is increasing (hence V_{∞} is a nonlinear operator on $\mathcal{M}_{l}(m)$).

(ii). V_{∞} is continuous on the increasing sequences of $\mathcal{M}_l(m)$.

(iii). V_{∞} is a sub-Markov operator from $\mathcal{M}_{l}(m)$ to $\mathcal{M}_{l}(m)$.

Proof. The assertions (i). and (ii). are obvious.

(iii). Let $f, g \in \mathcal{M}_l(m)$, and $\alpha \in (0, \infty)$ be such that $f \leq g + \alpha$. Since for each $n \in \mathbb{N}^* L_n$ is a sub-Markov operator we have that:

$$V_n(nf) \le V_n(ng) + \alpha \Rightarrow V_{\infty}f = \sup_{n \in \mathbb{N}^*} V_n(nf) \le \sup_{n \in \mathbb{N}^*} V_n(ng) + \alpha = V_{\infty}g + \alpha.$$

Theorem 3.11. We have the relation: $S_{\mathcal{V}} = S(V_{\infty})$.

Proof. Obviously that $\mathcal{S}_{\mathcal{V}} \subset \mathcal{S}(V_{\infty})$.

If $s \in L^{\infty}(m) \cap \mathcal{S}(V_{\infty})$, then $s \in \bigcap_{n=1}^{\infty} \mathcal{S}_n$. In view of Lemma 3.5:

$$\forall n \in \mathbb{N}^{\star}, \forall p \in \mathbb{N}^{\star}, \forall p \in (0, n), \mathcal{S}_n \subset \mathcal{S}_p \Rightarrow s \in \bigcap_{p \in (0, \infty)} \mathcal{S}_p = \mathcal{S}_{\mathcal{V}}.$$

Corollary 3.12. If follows that: $R^{V_{\infty}} = R^{\mathcal{V}}$.

Proof. The assertion is obvious.

Definition 3.13. For all $f, g \in \mathcal{M}_l(m)$ we shall say that f is specific smaller than g will respect to \mathcal{V} iff f is specific smaller than g with respect to V_{∞} . If $f, g \in \mathcal{M}_l(m)$ are as above then we shall denote this by $f \ll g$.

Proposition 3.14 (a Mokobodzki type theorem). For all $f \in \mathcal{M}_l(m)$ and $t \in \mathcal{S}_{\mathcal{V}}$. such that $f \ll t$, we shall have that $R^{\mathcal{V}} f \ll t$.

Proof. Since $R^{\mathcal{V}} = R^{V_{\infty}}$ in view of Theorem 2.8 the assertion is obvious.

References

- Boboc, N., Bucur, Gh. and Cornea A., Order and Convexity in Potential Theory: H-Cones., Lect. Notes in Math. 853, Springer, Berlin, 1981.
- [2] Dellacherie, C., Une version non linéaire du théorème de Hunt., Proc. of I.C.P.T. 90, Nagoya, 25-40, 1992.
- [3] Udrea, C., Nonlinear Resolvents., Rev. Roum. de Math. Pures et Appl. XL, 691-712, 1995.
- [4] Udrea, C., Supermedian Functions with Respect to a Nonlinear Resolvent, Math. Rep., Ed. Acad. Rom., 49, 285-297, 1997.
- [5] Udrea C., Resolvents and Nonlinear Potential Theory., New Trends in Potential Theory CTheta, 163-173, 2005.
- [6] Yazidi, M., Sur les résolvantes non linéaire., Math. Rep., Tom. 50, No. 5-6, 445-454, 1998.

Department of Mathematics, University of Piteşti, Str. Târgu din Vale, 110040 Piteşti, Romania *E-mail address*: corneliu_udrea@yahoo.com