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Abstract. The coarse-grainded architecture model has been proposed to be a model of
parallelism sufficiently close existing parallel machines. Under this model we design a
communication-efficient parallel algorithm for the solution of tridiagonal linear systems with
n equation and n unknowns. This algorithm requires only a  constant number of
communication rounds. The amount of data transmitted in each communication round is
proportional to the number of processors and independent of n. In addition to shoing its
theoretical complexity, we have implemented this algorithm on a real distributed memory
parallel machine. The results obtained are very promising and show an almost linear speedup
for large n indicating the efficiency and scalability of proposed algorithm.
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band matrices, odd-even cyclic reduction algorithm.

1. Introduction

Many current application in parallel machines are restricted to trivially parallelizable
problem with low communication requirements. In real machines communication time is
usually much greater than computation time. Therefore for non-trivial problems many
theoreticaly efficient parallel algorithms for the PRAM (shared memory model) or fine-
grained network model often give disappoiting speedup when implemented on real parallel
machines.

The Coarse Grained Multicomputer(CGM) model to be an adequate model of
parallelism sufficiently close to existing parallel machines. It is a simple model and
nevertheless intends to give a reasonable prediction of performance when parallel algorithms
on this model are implemented.

In the CGM model the effort to reduce communication is centered on reducing the
number of communication rounds. Under this model, we design a communication efficient
parallel algorithm for the solution of tridiagonal linear systems with n equation and »
unknowns. This algorithms requires only a constant number of communication rounds. The
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amount of data transmitted in each communication round is proportional to the number of
processors and independent of n. In addition to showing the theoretical complexity, we have
implemented the proposed algorithm on a real distributed memory parallel machine. The
experimental results obtained, indicate the efficiency and scalability of the algorithm.

2. The CGM model

The CGM model uses only two parameters, n and p, where 7 is the size of the input and
p the number of processors each with O(n/ p) local memory. Each processor is connected by
a router that can deliver messages in a point to point fashion. A CGM algorithm consists of
an alternating sequence of computation round and communication rounds separated by barrier
synchronizations.
we usually the best possible sequential algorithm in each
ly. A communication round consists of a single A-relation
:ssor exchanges at most a total of O(n/ p) data with other
processors in one communication round. The proposed algorithm requires the transmission of
only O(p) data in each communication round.
In the CGM model the communication cost of a parallel algorithm is modeled by the
number of communication rounds. The objective is to design algorithms that require a small
amount of communications rounds. Many algorithms for graph an geometric problems [4]

require only a constant or O(log p). Contrary to PRAM algorithms that frequently are
designed for p = O(n) and each processor receives a small number of input data, here we
consider the more realistic case of n>>p. The CGM model is particularly suitable in nowdays

parallel machines where the overall computation speed is considerably larger than the overall
communication speed.

3. The odd-even cyclic reduction method

Solution of a tridiagonal system is a very basic problem [4]. It arises in the solution of
many other systems such as partial differential equation using line relaxations or multigrid
[2]. A tridiagonal system is one in which all elements, except possibly those on the main
diagonal, and the ones just above or below it, are 0’s. Instead of the usual notation a,; for the

i-u; for

For the sake of

element in row i, column j, of A, we use d; to represent the main diagonal elementa

upper diagonal element a,.,, and /, for the lower diagonal elementa

Lt i1
uniformity, we define /, = u,_; = 0. With the notation defined above, a tridiagonal system of
linear equation can be written as follows, where x_; = x, =0 are dummy variables that are

introduced for uniformity:

lyx_; +dyxy +uyx, =b,
Lixg+dx; +ux, =D,

ln—lxn—2 + dn—lxn—l + Uy Xy = bn—l

Odd-even cyclic reduction [3] is a recursive method for solving tridiagonal systems of
size n=2" —1. This method is divided into two parts: reduction and back substitution. The
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first step of reduction is to remove each odd-indexed x; and create a tridiagonal system of

size 2™ —1. We then do the same to this new system and continue on in the same manner
until we are left with a system of size 1. Observe that the ith equation can be rewritten as

X = (l/di )(bi —l;x; _“ixm) ()

Taking the above equation (2) for each odd i and substituing into even-numbered
equations (the ones with even indices for /, d, u and b), we obtain for each even i(O <i< n)
an equation of the form:

. lisl; X, +| d; - liu;y . Uil X, — Uillisy Xy =b. - libiy _ ;b 3)
d,_, d, d d; d,_ d

i+1

i+l i+l

In this way, the n equation is reduced to ’_n/ 2_| tridiagonal linear equation in the even-
indexed variables. Applying the same method recursively, leads to n/4 equations, then /8
equations, and, eventually, a single equation in x,. Solving this last equation to obtain the
value of x,, and substituting backwards, allows us to compute the value of each of the n

variables. Figure 1 shows the structure of the odd-even reduction method.
Forming each new equation requires six multiplications, six divisions, and four
additions, but these can all be done in parallel using p =n/2 processors. Assuming unit-time

arithmetic operations, we obtain the recurrence T (n)=T (n/2)+8~8log,n for the total
number of computational steps. The six division operations can be replaced with one
reciprocation per new equation, to find 1/d; for each odd j, plus six multiplications.

Obviously, the above odd-even reduction method is applicable only if none of the d; values

obtainded in the course of the computation is 0.

. Xo
* find x, in terms of x¢ and x, from eqn. 1;
substritute x; in eqn. 0 and 2.

X3 Xo
X12 Xg X4 0
X4 /X12 X10 8 X6 X4 X)) X0
X * 1
\ 7

0,000 00O
4 X3~ X2 X1 Xo

0,00 000 0QUQ
X15 X14 X13 X12 X11 X70 X9 Xg X7 X Xs5

Figure 1. The structure of odd-even reduction for solving
tridiagonal system of linear equation

In the above analysis, interprocessor communication time was not taken into account.
The analysis is thus valid only for the PRAM or for an architecture whose topology matches
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the communication structure shown in Figure 1. A binary X-tree architecture whose
communication structure closely matches the needs of the above computation.
To perform odd-even reduction on linear array of p =n processors, we can assume that

each processor initially holds one of the n equations. Direct one-step communication between
neighboring processors leads to even-numbered processors obtaining the reduced set of
n/2equations as discussed above. The next reduction phase requires two-step
communication, then four-step, and eventualy (n / 2) step, leading to linear running time(of the
same order as sequential time). On an n-processor 2D mesh, odd-even reduction can be easily
organized to require @(\/; ) time. It is worth noting that solving a tridiagonal system of linear

equation can be converted to a parallel prefix problem as follows [3, 5].

Define the 3x3 matrix G; as
—d;/u; —1;/u; b;/u,
G =| 1 0 0 (4)
0 0 1

Then, the ith equation can be written in matrix form as

X —d; /u; —1;/u; blu; | |x X
X, |= 1 0 0 |x|x;|=G,xG,_x--xGyx| 0 ®)
1 0 0 1 1 1

In particular, we have

Xp-1 X0
Xy |[=G, 2 XG, 3 x--xGy x| 0 (6)
1

Solving this last set of three equations provides the values of x,, which can then used to

determine the values of all other variables, given the prefix results G; xG,_| x---x G, for

odd i.

We propose here a CGM algorithm that requires a constant number of comunication
rounds. By using the CGM paradigm, however, the algorithm proposed in this paper has been
conceived independently in a relatively natural way, following the CGM principles, namely,
minimizing communication rounds and using as much local processing as possible.
Furthemore, we have implemented this algorithm on a distributed memory parallel machine to
verify its efficiency in practice.

Consider a distributed memory parallel computer of p processors £y, P,,---, P, | with

n>> p. Assume that each processor has sufficient local memory to store O(n/ p) elements.

(see Figure 2). We subdivide matrix 4 and the vector b into horizontal blocks or submatrices
of n/ p consecutive rows each. Each processor stores a submatrix of 4 and b.
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Oln/p) 0(n/ p) owp) | O(n/ p)

O processor I:l local memory

Figure 2. A parallel computer with distributed memory

The proposed algorithm makes use of a modified version of the odd-even reduction
algorithm[1,2,6]. Each processor applies odd-even reduction to its n/p equations and
eliminates all equation but the first and the last ones. Thus each processor will have only four
unknowns. Each processor then send the two remaining equations to procesor 0. Processor 0
applies odd-even reduction locally and solves for unknowns. Each processor receives the
solved unknowns from processor 0 and solves for the remaining unknowns locally. The
algorithm consists of the following five phases (see Figure 3) alternating between local
processing and communication.

Theorem 1. 4 tridiagonal linear system with n equations and n unknowns can be solved
n
P
communication rounds with the transmission of O(p) data per round.

Proof: Step 1, 3 and 5 relate to local processing only. Step 2 and 4 require one
communication round each. In the first communication round (step 2) each processor send a
constant amount of data to processor 0, which in turn receives a total of O(p) data. In the

on a CGM with p processors and O( ] local memory per processor using O(l)

second communication round (step 4) processor 0 sends a total of O(p) data and each of
remaining processors receive a constant amount of data (The theorem follows).

The sequential time was obtained with an optimized sequential algorithm run in a single
processor (not the parallel algorithm run time one processor). For the experiment we use the
following system: /;, =u; =—1 forall i=1,---,n—1 and d; =2 forall i =0,---,n—1 (with the

solution of all x; =1 for i=0,1,---,n—1).

We obtain an almost linear speedup for large n, regardless of the communication
protocol utilized, as shown by the following results (see Figure 4 for the time curves). The
times are given in units of clock ticks of the machine(1 clock tick =107 seconds).

n p=1 p=2 p=4 p=8 p=16

1024 8727 5767 3372 | 3080 4714
2048 18896 11665 5887 | 3885 4794
4096 39032 23901 11730 | 6457 5903

8192 78618 47190 23654 | 12358 8077
16384 | 155944 95979 46693 | 24191 14005
32768 | 308148 | 189749 93867 | 47397 25552
65536 | 613099 | 375037 | 185122 | 94915 48508

131072 | 1223813 | 746283 | 365247 | 187116 | 95927

262144 | 2429358 | 1496103 | 727908 | 369437 | 187960

524288 | 4840124 | 2968610 | 1457379 | 736184 | 369990
Execution time(in clock ticks) using MPI
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Each processor applies the odd-even algorithm locally to eliminate all rows except the
first and the last rows in its submatrix. With this, each processor P, eliminates n/p —2

>V i
—+
p p p

equations and n/ p —2 unknowns, namely X,; ,X,; =, X ,(4)
—+2 3 1

Each processor P, sends its two remaining equation (with 4 unknowns

Xi > xii+1 > X p(i+1) > X n(i+1)
P b P p

system with 2p equations and 2p unknowns. Notice that this resulting system also

) to a same processor, say F,. This processor thus obtains a
+1

consists of a tridiagonal matrix.

Processor P, solves the system locally by od-even reduction or any other sequential
method. It thus obtains the solution for the 2p unknowns.

Processor P, sends to each processor P, the computed value for 4 unknowns in the

respective equations received in step 2.

Each processor performs the inverse process of odd-even reduction used in step 1, by

using the solution received for its two equations to solve the remaining equations.
Figure 3. Parallel algorithm odd-even reduction
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Figure 4. Total time of the tridiagonal algorithm in MPI

4. Conclusions

Under the CGM model we have designed a communication-efficient parallel algorithm

for the solution of tridiagonal linear systems. This algorithm requires only a constant number
of communication round with of O( p) data per round. In addition to showing its theoretical
complexity, we have implemented this algorithm on a real distributed memory parallel
machine. The experimental results show an almost linear speedup for large n. This is a very
significant result since the particular machine we used presents a considerable communication
latency and low communication bandwidth. It indicate the efficiency and scalability of the
proposed algorithm.
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THE POSITION VECTOR OF A POINT
EXERCISES

DUMITRESCU ION!
!Petru Cercel Highschool Targoviste

The vectorial method is is applicable for studying a large class of properties of the
euclidian space (coliniariy, coplanarity, parallelism, perpendicularity, calculation of angles,
distances, volumes, etc)

There are some exercices in geometry in which the vectorial method is more direct
and eloquent. It is good to know several methods. But more important is to know to choose,
adapt and use the best suited method.

There will be presented several geometry problems solved by using the vectorial
method.

SENTENCE: Points A, B, M, where M = B and
re R-{-1}, AM = r « ME . Then, for any point O € P we have
— OA+7r-0B
oM = ————
1+7v

and reciprocal.
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