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Abstract. The coarse-grainded architecture model has been proposed to be a model of 
iently close existing  parallel machines. Under this model   we design a 

ommunication-efficient parallel algorithm for the solution of tridiagonal linear systems with 
n eq

indicating the efficiency and scalability of proposed algorithm. 
 

1. In

The Coarse Grained Multicomputer(CGM) model  to be an adequate model of 
y close to existing parallel machines. It is a simple model and 

evertheless intends to give a reasonable prediction of performance when parallel algorithms 
on th
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parallelism suffic
c

uation and n unknowns. This algorithm requires only a  constant number of 
communication rounds. The amount of data transmitted in each communication round is 
proportional to the number of processors and independent of n. In addition to shoing its 
theoretical complexity, we have implemented this algorithm on a real distributed memory 
parallel machine. The results obtained are very promising and show an almost linear speedup 
for large n 

Keywords: coarse grainded multicomputer, parallel algorithm, tridiagonal linear system, 
band matrices, odd-even cyclic reduction algorithm. 
 

troduction 
 

Many current application in parallel machines are restricted to trivially parallelizable 
problem with low communication requirements. In real machines communication time is 
usually much greater than computation time. Therefore for non-trivial problems many 
theoreticaly efficient parallel algorithms for the PRAM (shared memory model) or fine-
grained network model often give disappoiting speedup when implemented on real parallel 
machines. 

parallelism sufficientl
n

is model are implemented. 
In the CGM model the effort to reduce communication is centered on reducing the 

number of communication rounds. Under this model, we design a communication efficient 
parallel algorithm for the solution of tridiagonal linear systems with n equation and n 
unknowns. This algorithms requires only a constant number of communication rounds. The 
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amou

ented t

ch with 

nt of data transmitted in each communication round is proportional to the number of 
processors and independent of n. In addition to showing the theoretical complexity, we have 
implem he proposed algorithm on a real distributed memory parallel machine. The 
experimental results obtained, indicate the efficiency and scalability of the algorithm. 
 
 2. The CGM model  
 

 The CGM model uses only two parameters, n and p, where n is the size of the input and 
p the number of processors ea ( )pnO /  local memory. Each processor is connected by 
a router that can de r messages in a point to point fashion. A CGM algorithm consists of 
an alternating sequence of computation round and communication rounds separated by barrier 
synchronizations.  

In the  computation round, we usually the best possible sequential algorithm in each 
processor to process its

live

 A communication round consists of a single h-relation 
anges at most a total of  

 data locally.
( )pnO /with  pnh /≤ , that is, each processor exch  data with other 

e proposed algorithm requires the transmission of 
nly

ly su
e the overal

uction method 
 

Solution of a tridiagonal system is a very basic problem [4]. It arises in the solution of 
many s partial differential equation usi
[2]. A tridiagonal system l elements, except possibly those on the m
diagonal, and the ones just above or below it, are 0’s. Instead of the usual notation  for the 
element in row i, column j, of A, we use di to represent the main diagonal element  for 
uppe

rmity, we

p
o
rocessors in one communication round. Th

 ( )pO  data in each communication round. 
In the CGM model the communication cost of a parallel algorithm is modeled by the 

number of communication rounds. The objective is to design algorithms that require a small 
amount of communications rounds. Many algorithms for graph an geometric problems [4] 
require only a constant or ( )pO log . Contrary to PRAM algorithms that frequently are 
designed for ( )nOp =  and each processor receives a small number of input data, here we 
consider the more realistic case of n>>p. The CGM model is particular itable in nowdays 
parallel machines wher l computation speed is considerably larger than the overall 
communication speed. 
 
3. The odd-even cyclic red

 other systems such a ng line relaxations or multigrid 
 is one in which al ain 

ija

iia , iu
r diagonal element 1, +iia  and il  for the lower diagonal element 1, −iia . For the sake of 

unifo  define 010 == −nul . With the notation defined above, a tridiagonal system of 
linear equation can be written as follows, where 01 ==− nx  are dummy variables that are 
introd r uniformity: 

0100010 −

x
uced fo

12111

=+
=++
=++ bxuxdxl

                                   12

01

+ 23322

111121 −−−−−− =++ nnnnnnn bxuxdxl
M

 
Odd-even cyclic reduction [3

bxuxd
bxuxdxl

] is a recursive method for solving tridiagonal systems of 
size . This method is divided into two parts: reduction and back substit

xl                                               (1) 

12 −= mn ution. The 
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first step of reduction is to remove each odd-indexed  and create a tridiagonal system of 

size  syst
i

12 1 −−m . We then do the same to this new em and continue on in the same manner 
until we are left with a system of size 1. Observe that the ith equation can be rewritten as 

 
                                           

x

( )( )11/1 +− −−= iiiiiii xuxlbdx                                              (2) 
 

Taking the above equation (2) for each odd i and substituing into even-numbered 
equations (the ones with even indices for l, d, u and obtain for each even ( )nii b), we ≤≤0  
an equation of the form: 
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In this way, the n equation is reduced to 

1+
⎟
⎠

⎡ ⎤2/n  tridiagonal linear equation in the even-
indexed variables. Applying the same method recursively, leads to  equations, then 
equations, and, eventually, a single equation in . Solving this last equation to obtain the 

, and substituting backwards, allows us pute the value of each of the n 
variables. Figure 1 shows the structure of the odd-even reduction method. 

 Forming each new equation req six divisions, and four 
additions, but these can all be done in parallel using 

4/n 8/n  
x0

 to comvalue of 0x

uires six multiplications, 
2/np =  processors. Assuming unit-time 

arithmetic operations, we obtain the recurrence ( ) ( ) nnTnT 2log882/ ≈+=  for the total 
number of computation an be replaced with one 
reciprocation per new equation, to find  for each odd j, plus six multiplications. 
Obviously, the above odd-even reduction m ly if none of the  values 
obtainded in the course of the computation is 0. 

 

tri

In the above analysis, interprocessor communication time was not taken into account. 
he analysis is thus valid only for the PRAM or for an architecture whose topology matches 

al steps. The six division operations c
jd/1

e  jdthod is applicable on

x0 

 
Figure 1. The structure of odd-even reduction for solving 

diagonal system of linear equation 
 

T

*

     x12                 x8                                      x4                  x0 

x8                                           x0 

 x14         x12               x10           x8               x6         x4         x0   x2      

  x15  x14  x13  x12  x11  x10   x9  x8   x7     x6   x5   x4   x3    x2   x1    x0 

* find x1 in terms of x0 and x2 from eqn. 1; 
substritute x  in eqn. 0 and 2. 1
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the communication structure shown in Figure 1. A binary X-tree architecture whose 
communication structure closely matches the needs of the above computation. 

np =To perform odd-even reduction on linear array of  processors
each ne of the n equations. Direct one
neighboring processors leads to even-numbered processors obtaining the reduced set of 

eduction phase requires two-step 
communication, then four-step, and eventualy 

, we can assume that 
processor initially  holds o -step communication between 

2/n equations as discussed above. The next r
( )2/n step, leading to linear running time(of the 

 order as sequential time). On an n-processor 2D mesh, odd-even reduction can be easily 
organized to require 
same

( )pΘ  time. It is worth noting that solving a tridiagonal sy
equation can be converted to a parallel prefix problem as follows [3, 5].  

 as 

                                         

⎦⎢
⎢
⎢

⎣

⎡ −−
=

100
001

// iiii

i

bulud
G                                            (4) 

Then

⎤
⎢
⎡

⎥⎢⎥⎢⎥⎢
+ 01 xiiiiiiii

⎢

o
determine the values of all other variables, given the prefix results for    
odd i. 

We propose here a CGM lgorit  that requires a constant number of comunication 
rounds. By using the CGM paradigm, however, the algorithm proposed in this paper has been 
conceived independently in a relatively natural way, following the CGM principles, namely, 
minimizing communication d using a l processing as possible. 
Furthemore, we have implem llel machine to 

cy

stem of linear 

 
 
Define the 33×  matrix iG

⎥
⎥
⎥
⎤/ ii u

, the ith equation can be written in matrix form as 
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In particular, we have 

        
⎤⎡
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S lving this last set of three equations provides the values of 0x , which can then used to 

⎥

01 GGG ii ××× − L  

 a hm

rounds an s much loca
ented this algorithm on a distributed memory para

 in practice.  verify its efficien
Consider a distributed memory parallel computer of p processors 120 ,,, −pPPP L  with 
pn >> . Assume that each processor has sufficient local memory to stor )pn /  elements. 

(see Figure 2). We subdivide matrix A and the vector b into horizontal blocks or submatrices 
of pn /  consecutive rows each. Each processor stores a submatrix of A and b.  

e (O
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Figure 2. A parallel computer with distributed memo
 

The proposed algorithm makes use of a modified version of the odd-even reduction 
algori

ry 

he tw  ema o es  0  Pr
or unknowns. E

rocessor 0 and solves for the remaining unknowns locally. The 
algor

n be solved 

on a CGM with p processors and 

thm[1,2,6]. Each processor applies odd-even reduction to its pn /  equations and 
eliminates all equation but the first and the last ones. Thus each processor will have only four 
unknowns. Each processor then send t  o r ining equations to pr c or . ocessor 0 
applies odd-even reduction locally and solves f ach processor receives the 
solved unknowns from p

ithm consists of the following five phases (see Figure 3) alternating between local 
processing and communication. 

Theorem 1. A tridiagonal linear system with n equations and n unknowns ca

⎟⎟⎜⎜
⎝ p ⎠

⎞⎛ nO  local memory per processor using ( )1O  

communication  rounds with the transmission of  ( )pO  data p nd. 
Proof: Step 1,  5  to rocessing only. Step 2 and 4 require one 

communication roun . In st c icat n 2) ea cessor send a 
constant amount of data to processor 0, n tu i tal  data. In the 
second communication round (step 4) processor 0 sends a total of 

er rou
 3 and  relate local p
d each  the fir ommun ion rou d (step ch pro

which i rn rece ves a to  of (pO )
( )p  datO a and each of 

remaining processors receive t f   follows). 
The sequenti a d w pt eq alg run in a single 

processor (not the u e r e nt we use the 
following system: 

a constan amount o data (The  theorem
al time w s obtaine ith an o imized s uential orithm 
parallel algorithm r n time on processo ). For th experime

1 for all −== ii ul 1,,1 −= nLi  and 2=id  for all 1,,0 −= ni L  (with the 
solution of all  fo1=ix  r  1,,1,0 −= ni L ). 

 
oc
s a
 

n p=1 p=2 p=4 p=8 p=16 

We obtain an almost linear speedup for large n, regardless of the communication 
ol utilized, as shown by the following results (see Figure 4 for the time curves). The 
re given in units of clock ticks of the machine(1 clock tick =10-6 seconds). 

prot
time

1024 8727 5767 3372 3080 4714 
2048 318896 11665 5887 885 4794 
4096 39032 6457 23901 11730 5903 
8192 78618 47190 23654 12358 8077 

16384 155944 46693 24191 14005 95979
32768 308148 189749 93867 47397 25552 
65536 613099 375037 185122 94915 48508 

131072 1223813 746283 65247 18713 16 95927 
2 362144 2429358 149610 727908 369437 187960 
524288 4840124 2968610 1457379 736184 369990 

Execution time(in clock ticks) using MPI 
 

… 

local memory processor 

P0 P1 P2 Pp-1 
   

 

 

 
( )pnO /  ( )pn( )pnO / O /

  
( )pnO /
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S1. 

Each processor applies the odd-even algorithm locally to eliminate all rows except the 
first and the last rows in its submatrix. With this, each processor eliminates iP 2/ −pn  
equations and  unknowns, namely 2/ −pn ( ) 1132

,,,
−

+
++

p
in

p
ni

p
ni xxx L . 

 
 
S2. 

Each processor   sends its two remaining equation (with 4 unknowns  iP

( ) ( ) 1111
,,,

+
++

+
p
in

p
in

p
ni

p
ni xxxx  ) to a same  processor, say . This processor thus obtains a 

system with equations and  unknowns. Notice that this resulting system also 
consists of a tridiagonal matrix. 

 
S3. 

Processor  solves the system locally by od-even reduction or any other sequential 
method. It thus obtains the solution for the  unknowns. 

S4. Processor  sends to each processor  the computed value for 4 unknowns in the 
respective equations received in step 2. 

S5. Each processor performs the inverse process of odd-even reduction used in step 1, by 
using the solution received for its two equations to solve the remaining equations. 

Figure 3.  Parallel algorithm odd-even reduction 
 

 

 

 

communication-efficient parallel algorithm 

we have implemented this algorithm on a real distributed memory parallel 

iderable communication 

algorithm. 
 

0P

p2 p2

0P
p2

0P iP

 

 
 
 
 
 
 
 
 
 
 

 

 
 
 
 

 
4. Conclusions 

 
Figure 4. Total time of the tridiagonal algorithm in MPI 

 
Under the CGM model we have designed a 

for the solution of tridiagonal linear systems. This algorithm requires only a constant number 
of communication round with of ( )pO  data per round. In addition to showing its theoretical 
complexity, 
machine. The experimental results show an almost linear speedup for large n. This is a very 
significant result since the particular machine we used presents a cons
latency and low communication bandwidth. It indicate the efficiency and scalability of the 
proposed 
  

 242



JOURNAL OF SCIENCE AND ARTS 

References 
 

]. Lixing Ma, Frederick C. Haris Jr.  for Solving a Tridiagonal Linear 
 University of Nevada, Reno,NV 

gonal Solvers Using Direct 

]. Us inear Algebra Appl.212/213(1994) 

 
THE POSITION VECTOR OF A POINT 

EXERCISES 

DUMITRESCU ION1 

   1Petru Cercel Highschool âr

The vectorial method is is applicable for studying a large class of properties of the 
uclidian space (coliniariy, coplanarity, parallelism, perpendicularity, calculation of angles, 
istances, volumes, etc) 

ore direct 
nd eloquent. It is good to know several methods. But more important is to know to choose, 
dapt and use the best suited method. 

ill be presented several geometry problems solved by using the vectorial 

A Parallel Algorithm[1
System with ADI Method, Department of Computer Science
89557 
2]. Eunice E. Santos, Optimal and Efficient Parallel Tridia[

Methods , The Journal of Supercomputing, 30, 97-115,2004 Kluwer Academic Publishers, 
The Netherlands  
[3]. Parhani, B., Introducing to Parallel Processing (Algorithms and Architectures (electronic 
format), University of California at Santa Barbara 
[4]. Fanache, D., Smeureanu, I., A Linear Algorithm for Black Scholes Economic Model, 
Economic Computation and Economic Cybernetics Studies and Research, nr 2, 2008, ISSN 
0585-7511  
[5].  C.M. Da Fonseca, On the eigenvalues of some tridiagonal matrices, Departamento de 
Matemática, Universidade de Coimbra, 3001-454 Coimbra, Portugal 
[6 mani, R., Inversion of tridiagonal Jacobi matrix, L
413-414 

 
     
 T govişte 
 
 
e
d
 
a

There are some exercices in geometry in which the vectorial method is m

a
 There w
method. 
 SENTENCE: Points A, B, M, where M ≠ B  and   
r∈ R - {-1},  . Then, for any point O ∈ P  we have 

 
and reciprocal. 

 

 M(r<0)B M(r>0)A
 

 

 

 O
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