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1 Preliminaries

Let us denote N = {1,2,...} and Ny = NU {0}. If p € Ny is given, the Schurer’s operator
By C([0,14p]) — C(]0,1]) is defined [15] for any positive integer m, any f € C([0,1+ p])

and any z € [0, 1] by
m-+p
B )(2) =3 s ( ) 1)

where py, k() denotes the Schurer’s fundamental polynomials, i.e.

Puale) = (" 1)t oy 2)

It is well known [15] the following convergence property of the sequence
{Bm,pf }mzl
lim By, of=1 (3)

m—r0oo
uniformly on [0, 1], for any f € C([0,1+ p]).
Considering the non-negative integers p, ¢ and using the method of parametric extensions
[1], [10], in [2] was constructed the bivariate Schurer’s operator B, . : C([0,1+p] x [0,1+
q]) = C([0,1] x [0, 1]), defined for any positive integers m, n, any f € C([0,1+p]) x [0, 1+¢])
and any (z,y) € [0,1] x [0, 1] by
. m+p n+q k ]
(Bmpan T y Zzpmk pn,] f<%’ﬁ> . (4)
k=0 5=0
Many approximations properties of the operator (4) can be found in [3].
Consider now the Schurer’s bivariate approximation formula

f = Em,p,n,qf + ém,p,n,qf- (5)

Regarding the remainder term of (5), in our recent paper [8] were proved the following results.
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Theorem 1.1. [8] The remainder term of Schurer’s bivariate approzimation formula (5) can
be represented under the form

(Rm,p,n,qf) (xv y) =51+ 5+ 853 (6)
where
Pz m+p n+q x, k
=D D Pmk(@)Pns () [ ) ;f] (7)
k=0 ;=0 o
m+p 1 ntq k k£l
1—2x)(m+p) Tym “m
( Z me 1 k pnj ) [ . ; f] ;
k=0 j5=0 ﬁ
m+p n+q &
Zzpmk pn,] [ j 7f] (8)
k=0 ;=0 Y %
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k=0
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2SS st | ]
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Note that in (7), (8) and (9) the brackets denote bivariate divided differences (for more
details, see [5], [13], [14]).

Theorem 1.2. [8] Let f : [0,1+p] x [0,14 ¢] — R be a function belonging to C>?([0,1 +
p] x [0,1+4 q]). Then, there exists a constant M > 0 depending on f,p,q such that for any
(z,y) €10,1] x [0,1], any m,n € N the following

Im+p In+gq (9m+P)(9n+q)>M

Nm n ) < 1
(Fonma )] < (Pl 4 2t Bt DS, (10)

holds.

Note that from (10) follows directly the convergence of the sequence {Em%n,q flmn>1 to
f, uniformly on [0, 1] x [0, 1].

2 Main results

Starting ~ with  the approximation  formula (5), by  integration  on
[0,1] x [0, 1] it follows the cubature formula

//fxydxdy—niﬂ)%Akgf( L) 4 Rl (1)

k=0 7=0
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The cubature formula (11) will be denoted the ”Schurer’s cubature” formula, because it
is obtained by integrating the bivariate Schurer’s bivariate approximation formula (4).

Theorem 2.1. The coefficients Ay j of (11) can be expressed under the form

1
(m+p+1)(n+q+1)°

A= (12)

for any k € {0,1,...,m} and any j € {0,1,...,n}.

Proof. Taking (4) into account, we get

1 1
Ak,g //pm,k pn,y dl‘dy—/pmk( )d /pn,j(y)dy (13)
0 0
1

1
<m +p> <n + Q> /:L’k(l _ x)m+p_kda:/yj(1 _ x)n—l—q—jdy
k J
0 0

<ml—:p> (n;_q>B(k+1,m+p+1—k)B(j+1’”"’q_'_l_j)’

where B(k+1,m+p+1—k), B(j+1,n+qg+1—j) denote the Beta Euler’s functions [17].
Taking the well known properties of Euler’s functions Gamma and Beta into account,
yields

L(k+1)C(m+p—k+1)  kl(m+p—k)

Blk+1m+p+1—k) = - , 14
( mp )= L(m+p+2) (m+p+1)! (14)
, AT+ D)Pn+g—j+1)  jln+q—j)
B 1 1-— = . 15
+lnta+l=j)= ['(n+q+2) (n+q+1)! (15)
Taking (13), (14) and (15) into account, it follows (12). O

Theorem 2.2. Suppose f € C?([0,14p] x[0,1+4¢]). Then, there exists a constant M > 0
depending on f,p,q such that the remainder term of (11) verifies

9m+p+9n+q+ (9m+p)(9n+q)> M

|Rm,p,n,q[f]| S < 8m2 8”2 64m2n2 (]‘6)

Proof. One applies Theorem 1.2. Integrating (10), one arrives to the desired inequality
(16). O
Remark 2.1. For more informations about the constant M, see [8].

Remark 2.2. For p = ¢ = 0 the Schurer’s bivariate approximation formula (4) reduces to
the bivariate Bernstein’s approximation formula

and, consequently, it follows the Bernstein’s cubature formula

//f x,y)dzdy = ZZAk,Jf < ) + Rl f]. (18)

k=0 7=0

Applying Theorem 2.1, it follows
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Corollary 2.1. [21], [9] The coefficients of Bernstein’s cubature formula (18) can be repre-

sented under the form
1

Bei = i Dm0 (19)

for any k € {0,1,...,m} and any j € {0,1,...,n}.

Proof. In (12), one takes p = ¢ = 0. O

Corollary 2.2. Suppose f € C??([0,1] x [0,1]). Then, there exists a constant M; > 0
depending of f such that the remainder term of (18) verifies:

Bl = (5 + 52 + e ) Mo (20

Proof. One applies (16) for p = ¢ = 0. O

Corollary 2.3. Suppose f € C>2([0,1+p] x [0,1+q]). Then

i (m+p+1)tn+q+1 mff’%f( ) //f x,y)dzdy (21)

uniformly on [0,1] x [0, 1].

Proof. The assertion follows from Theorem 2.2. O

Corollary 2.4. Suppose f € C>2([0,1] x [0,1]). Then

m}?ilr—r>loo(m—|—1 nt1) kiz < ) //fxydxdy (22)

uniformly on [0,1] x [0, 1].

Proof. One applies the Theorem 2.2 for p = ¢ = 0 (or Corollary 2.3 for p = g = 0 or, directly,
Corollary 2.2). 0
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