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Abstract: Consider the Cauchy semilinear problem of the Navier-Stokes flow of
incompressible fluids - one of the Millenium Prize Problems (see [1]). By standard arqu-
ments we can formulate the problem as an abstract equation and prove the existence and the
uniqueness of the strong solution. The proof is constructive and it is based on the Fourier
method developed in the energetical space of the Stokes operator (on the complete sequence of
the eigenvectors of the duality map). Some open problems are also appended.

1 Introduction

Consider the Navier-Stokes system for incompressible fluids filling all of RY, (N = 2 or 3):

%-l—u-Vu:l/Au—Vp-l-f, (1)
V-u=0,inRN, t>0, (2)
u(z,0) = u’(z), z € RY, (3)

where v > 0 (dynamical viscozity), f (body forces) and u® (initial velocity) are given. These
equations are to be solved for an unknown wvelocity vector u : RY x [0,00) — RY and the
presure p: RN x [0,00) = R. The Euler equations can be obtained for v = 0 in (1)-(3).

For physically reasonable solutions, we ask that u does not grow large as |z| — co. Hence
we will restrict attention to data f and u® that satisfy:

10207 f(2,8)] < Cank(L+ |z[+8)7", 2 € RY,t >0, (4)

and
|0’ ()] < Caxc (14 |a]) 7, (5)

for any a, n and K. A solution [u, p] is physically reasonable only if it is enough smooth and
it has bounded energy, i.e.,
lu(z,t)]*dz < C,Vt > 0. (6)
RN

Let u® be any smooth, divergence-free vector field (i.e., V - u® = 0) satifying (5). We
have to prove that either there exists a smooth solution [u, p] € C®(RY x [0, 00)) that satisfy
(1),(2),(3) and (6), or there exist no such solutions. Remark that these problems are not
solved yet for v > 0, f =0 and N = 3 (see [1]).

Let ¢ : RN x [0,00) = RY be a compactly supported vector field. Then, multiplying (1)
and (2) by ¢, a formal integration by parts yields:

99
u - —dzxdt — b(u,u, p) =
/»/RNXR_‘_ at ( ¢)
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://szxR+ Vu-V¢dxdt+//RNXR+(f—Vp)-cbdxdt, (7)

09
b(u,u, @) := // u;u; ——dxdt
( ) ; RNXR+ Jaflfj

where

and

//RNXR+ u - Vyodrdt = 0. (8)

A solution of (7)-(8) is called a weak solution of Navier-Stokes system. Observe that these
equations make sense for all u € L? and p € L'.

2 Abstract Fourier Method

Define the space of incompressible fluids:
Coy = 1{y € (CF°(RY))™; V-u =0},

and let X be its completion with respect to the norm || - ||s. Then X is a Hilbert space with

the scalar product:
N
(y, w) :=/ y'w=2/ yiwida.
RN = JRN

Let E be its subspace:
E:={yeX;ye (W R},
Since WL2(RY) = W, *(RY) (see [2]), E can be viewed as the completion of C§, in the norm
of W, ?, namely:
B:=C5 " = {y € (W (&)Y V-y =0},

Remark that the scalar product in X is in fact the duality pairing between E* and FE.
Consider the Stokes operator A € L(E, E*) defined by:

N
(Ay, w) = Z Vy; - Vw;dx, Vy,w € E,

i=1 /RN
and define the three-linear form:
N
by, z,w) := Z / yiDzjw;dx,
ij=1YRYN

that determines the nonlinear operator C': F — E* by:

C(y,w) :=0by,y,w), Yy,w € E.
Then the equation (7) can be written as:

d
7 (u,0) = (f = vAu—C(u),v), Yo € E, (9)

and we obtain the following weak formulation of Navier-Stokes system:
Given f € L*(0,T; E*) and v’ € X find uw € L*(0,T; E) such that u; € L*(0,T; E*) and:

{‘2—1‘+1/Au+0(u):f on (0,T), (10)

u(0) = u®.
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Here u; := % and 7" > 0 is any large real number. The weak solution that is enough smooth,

i.e, u e C((0,T); E)nC*((0,T); X), is called the strong solution of Navier-Stokes system.
As A: E — E* is symmetric (Ay,w) = (y, Aw) and strongly monotone (Ay,y) > |ly|?
and E is its energetic space, there exist [e,, A\,] € E x [0,00) solutions of the eigenvalue
problem:
(Aey,,v) = Ap(en,v), Yv € E,

with (e;,e;) = d;; and Ay < Ay < ... < A\, = o0o. Then (e,)nen is an orthonormal basis in
E, (vV/A\én)nen is an orthonormal basis in X and (\,e,)nen is an orthonormal basis in E*.
Moreover, A is continuous and can be viewed as the duality mapping J : F +— E*, that is
(Ju,v) = (u,v)g (see [4]). Hence, u € L*(0,T;E) = Au € L?(0,T; E*) and we have the
implications (see [8] p.281):
C(u) € LY0,T;E*) = f—vAu—C(u) € L'(0,T; E*) = u, € L'(0,T; E).

Therefore u is (a.e. =) continuous from [0,7) to E*.

We try to find the weak solution of the Cauchy problem (10) as the Fourier series in E:

u(@,t) ==Y bu(t)en(x) = lim > br(t)er(). (11)
n=0 k=0

To do this denote by D;v := % and describe in detail the convective term:
(’U . V)U = (U1D1 + -+ UNDN)’U = (lelvk + -+ UNDNUk)lgk:SN-

Denoting e, := (ej')l < m < N and vy(x,t) := Y0 by(t)e,(x) for all n € N, the k-
component, (1 < k < N), of the vector (v, - V)v, will be:

(i bye,’ - i prme’;> .
p=0 p=0

N
vp Dk + -+ vl Dok = E
1

m

Then (u- V)u = lim(v, - V)v,, by Mertens theorem and:

N
((vn - Vv, (-, 1), €5) := Z /]RN (vi Do 4+ -+ 0N Dyl - ef(x)dx =
k=1

= ;;bp—q(t)bq(t) [/RN ; <Z_1 egl_q(:r)Dmelg(x)> .e;?(a;)d:c] =:
=1 ¢j(bi(t); ... bu(t), j =1

Taking (11) and v :=e;, j > 1, we formally obtain that b,(¢) must satisfy the scalar Cauchy
problem:

{%+V&@+qwb”wm)zﬁﬁh (12)

bj(0) = uj, 1<j<n,
where u} and f;(t) are the Fourier coefficients in F of u® and f(-,t), respectively:
W= (e fi(t) = (F(a0)e)p Vi EN.

Let n € N be any fixed number. The homogeneuos linear system b;--i—l/)\jbj =0,1<j7<mn,
has the solution b;(t) := kje "% with k; € R, 1 < j < n. By variation of constants k; := h;(t)
we deduce that h; are solutions of the following system

h; = el/)‘jtfj (t) — )\je”’\ftcj(e_”)‘ltm (t), ey e_y)\nthn (t))a
hj(0) =u}, 1<j<n
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with ¢; some sums of quadratic terms in hy, ..., h,. Consider the vectors h := (h;)i<j<, and
P(t,h) = ("M fi(t) = eV ei (e ha(t), - ., e ha (1)) )1<j<n-
Then, in vectorial form, the above system can be expressed as the Cauchy problem

{h’ = F(t,h),

h(0) = u®, (13)

with F' continuous in [¢, h] and of class C' in h. Hence there exists a unique solution h = h(t)
and h € C'([0,7]), with 0 < 7 < T, by Picard theorem.

Consequently, the Cauchy problem (12) has a unique solution, that determine the coeffi-
cients of the Fourier series (11) and so u(z,t). To prove that this is the weak solution of the
Navier-Stokes system (10) we have to prove that:

(a) The series > b,(t)e,(z) converges uniformly to u € C([0,T]; E);
n=1

(b) The series Y bl (t)e,(z) converges uniformly to u, € C([0,T]; E*);
n=1

(c) This u(z,t) is the unique weak solution of the Cauchy problem (10).

3 Existence, Uniqueness and Smoothness
The answers to the above three problems, (a),(b) and (c¢), depend on the convergence of the
numerical series: }
St
Suppose that this series is convergent in R and remark that
M, :=sup{|h,(t);n €N, t € [0,T]} < +o0,

My :=sup{|h},(t)|;n € N, t € [0,T]} < +o0.

Then
|bn (8)]7 = |e™ "y (2)] = €72 [ ()]

and thus for any § € (0,7") there exists ns € N such that:

An 2
Hence 1
[bn (O < M} —5
An?

that is, the function series Y b, (¢)|? is convergent for ¢ € [6, T, with § > 0 arbitrarily choosen
in (0,7). Thus the series »_ b,(t)e, is uniformly convergent to u € C([0,T]; E) because

1D ba(®enlz =D 1bal” < +o0.
Further, b, () = —vAne™ " hy(t) + e *hy () By, (t) and thus:
|b,ln(t)|2 S 2V2)\3L€_2y>\"t|hn(t)|2 + 26_2V>‘"t|h;1(t)|2 S Q(VQ)\?ZMlQ + M22)€—2V>\nt‘

Then
2 6—2V/\nt
< P MPe " + 2 M3
A
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and, similarly, we can conclude that:

/
b’i(t) < 2 M{—55 + 2My —57, Vn > mg, t €[5, 7.
n An 2 An

Consequently, the series > b/ (t)e, converges absolutely to @ € C((0,7); E*) because

IS8, (el =‘ B3 b (1)

An
We will show that @ = %* as a distribution on (0, 7). Indeed:

/0 (Zbg(t)en> ¢<t>dt=[<zbn<t>en) ¢(t>] - / (anu)en) ¢ (t)dt =

/ (Zb ) t)ydt, Yo € C(0,T), m € N,

that is v’ = @ as a distribution from (0,7") into E*.
Let us show that u := > b,(t)e, is a weak solution of the Cauchy problem (10):
Indeed, for ¢t = 0 we have:

2
< 400

0) = b(0)en(x) = uben(r) = u’(x).

On the other hand, remark that

> B+ vAjby A+ Ajc(ba, - b Zf]ej

and thus, multiplying in X by e, 1 < k < n, we deduce:

Z b GJ, 6k Z V)\jbjej, Gk) + (Z )\jcjej, ek) = (Z fjej, ek).
j=1 j=1

j=1

Since Ae; = Je; = \je; and {ex; k € N} is an orthonormal basis in E, letting n — oo we

deduce that:
du

(o5 w)

that is, u is the weak solution of the problem (10). Remark that v € C([0,T];E) N
C'((0,T); X), that is, u is the strong solution of the Cauchy problem.

To show the uniqueness of this strong solution, let u; and uy be two such solutions, i.e.,

an en(x) = limwy, (z, 1),
z,t) = an(t)en(x) = lim vy, (2, t),

vin(x,t) ij ej ),  von(x,t): qu ej

Thus, for any € > 0 there exist n’,n” € N such that:

g1 %

+ v(Au,w) + ((u - V)u,w) = (f,w), Yw € E,

where

|(%v1n — vAvy, — (V1 - Vv, v) — (f,v)] < e, Yo € E, n>nl,
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and
d
|(%1}2n - VAUZn - (U2n : V)UZnav) - (f,U)| <g, Vv € E, n > nlel
Denote by n. := max{n.,n”} and take v :=e¢;, 1 < j < n. Then we obtain:
kj = [p}(t) + vAjpi(t) + Njcj(p1, - pn) — fi()] <&, Vn > mn,, t € (0,T)
and

Ty = |q;(t) + V)\j(]j(t) + /\jcj(q1: .. .,qn) - f](t)| <eg Vn>n.te (O,T)
Let p := (p1,...,pn) and ¢ := (qu,-..,qs) be, respectively, the solutions of the following

problems:

V' = Fi(t,b) b = F5(t,b)

b(0) = u° " b6(0) = ’
where F(t,0) := (=\;jbj — ¢;(b) + fj(t) + k;(t))1<j<n and Fy(t,0) := (—A;b; — ¢;(b) + f;(t) +
7i(t))1<j<n). As Fi and F, are continuous in ¢ and of class C* in b, the solutions depend
continuously on the second term, that is:

— F)| = — | = () —ri(t)] <
|71 — Bof == max |Fy; — Fy;| = max [k;(t) —r;()] <

< max{|k]| + |7”j|} < 2, Vte (O,T)
1<j<n

It follows that:
p(t) = q(t)] = max |p;(t) — g;(1)] < g(e), Vt € (0,T)
with lin% g(e) =0, that is p;(t) = ¢;(t) and so u; = us.
E—
We can conclude: Moo

Theorem: If the series Y. \n ° is convergent, then there exists an unique (weak) strong
solution of the Cauchy problem of Navier-Stokes system.

Along to same line we mention that this series is convergent in the case of a bounded
domain in RY. The proof is based on the Weyl’s law:

p(Qwy
(2m)N

N\ = MV 4+ R(N),

where N(A) := card{j € N;y/\; < A}, wy is the volume of the unit ball in RY and
R(A) = O(AN71), which depends on the measure of the domain () in RN (see [3] for
details). In the case of the unbounded domain, particularly when the domain is all of RV,
this convergence is still unproved.
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