Journal of Science and Arts 1(2009), 33-42 Valahia University of Târgoviște

PARTIALLY ORDERED SETS AND APPLICATIONS TO THE RECURSIVE AND THE INVERSION FORMULAS OF MÖBIUS

GEORGIANA VELICU

Valahia University of Târgovişte, Bd. Unirii 18, 130056 Târgovişte, Romania, e-mail: neacsugeorgiana@yahoo.com

Abstract: In this paper we present some examples of partially ordered sets and also some applications of the inversion formula of Möbius and recursive formula of Möbius.

1 Preliminary notions about partially ordered sets

Definition 1. A partially ordered set (or poset for short) is an ordered pair (P, \leq) , consisting of a set P and a relation \leq on P satisfying the following properties:

- 1. for all $x \in P$, $x \le x$ (reflexivity);
- 2. for all $x, y \in P$, if $x \le y$ and $y \le x$, then x = y (anti-symmetry);
- 3. for all $x, y, z \in P$, if $x \le y$ and $y \le z$, then $x \le z$ (transitivity).

Remark 1. Obviously the notation x < y is used when both $x \le y$ and $x \ne y$ holds, and when it is ambiguous to which poset the relation belongs, we will write \le_P instead of \le .

Example 1. The following are standard examples of posets. Given $m, n \in \mathbb{N}$ we define $[m, n] := \{m, m+1, m+2, ..., n\}$, if m = 1, let $[n] = [1, n] = \{1, 2, 3, ..., n\}$.

- 1. The sets N, Z, Q and R are all posets, together with their linear orderings.
- 2. Given $n \in \mathbb{N}$, the poset **n** is the set [n] ordered by linear relation 1 < 2 < ... < n.
- 3. Given $n \in \mathbb{N}$, the poset D_n is the set of all positive divisors of n ordered by divisibility, i.e. $x \leq_{D_n} y$ if and only if x divides y.
- 4. Given $n \in \mathbb{N}$, the poset B_n is the power set of [n] ordered by inclusion, i.e. $X \leq_{B_n} Y$ if and only if $X \subseteq Y$.

Definition 2. If $x \leq y$ in the poset P, then the closed interval (or interval for short) from x to y, denoted by [x,y] is the set $[x,y] := \{z \in P/x \leq z \leq y\}$. The open interval from x to y is the set $(x,y) := \{z \in P/x < z < y\}$. The collection of all intervals of P is denoted Int(P).

Remark 2. Notice that $[x, x] = \{x\}$ and $(x, x) = \phi$.

Definition 3. A poset P is locally finite if every interval of P is finite.

Definition 4. If x < y and $(x, y) = \phi$ in the poset P, then we say that y covers x (i.e. between x and y there is no other element from P).

Paper presented at The VI-th International Conference on Nolinear Analysis and Applied Mathematics (ICNAAM), Târgovişte, 21-22 nov, 2008

Definition 5. Two elements x and y in the poset P are comparable if $x \leq y$ or $y \leq x$; otherwise x and y are incomparable.

Definition 6. A poset P is a chain (or totally ordered set or linearly ordered set) if every pair of elements is comparable and the *length* of a chain is equal with the number of elements composing the chain minus 1.

Definition 7. The Hasse Diagram of a finite poset P is the graph whose vertex set is P and whose edge set is the covering relations in P. If x covers y in P, then x is drown with a higer horizontal coordinate than y.

$\mathbf{2}$ The incidence algebra of a locally finite poset

In this section we introduce an algebraic structure for locally finite posets, as in [2] and [5], that is useful in answering many of the combinatorial questions associated with such poset.

Let (P, \leq) be a poset and k a field of characteristic zero. Let

$$A_k(P) = \{ f : P \times P \to k / if \ not \ x \le y \ then \ f(x, y) = 0 \}.$$

When is not ambiguous we can denote with A(P) instead $A_k(P)$.

The set $A_k(P)$ becomes a k – vector space, where for $f, g \in A_k(P)$ and $\alpha \in k$ we have:

$$(f+g)(x,y) = f(x,y) + g(x,y)$$

$$(\alpha \cdot f)(x, y) = \alpha f(x).$$

We define the *convolution* f * g for all $f, g \in A_k(P)$ such that

$$(f*g)(x,y) = \sum_{x \le z \le y} f(x,z)g(z,y)$$
, if $x \le y$ and $(f*g)(x,y) = 0$ else.

Remark 3. Notice that since P is locally finite, the number of summands in the above sum is finite. Therefore, convolution is well-defined. For all $f \in A_k(P)$ and $n \in \mathbb{N}$, denote the convolution of f with itself n times by f^n .

Theorem 1. The set $A_k(P)$ with the operations: addition, multiplication with scalars and the convolution is an algebra called *incidence algebra* of the poset (P, \leq) . The elements of $A_k(P)$ we call incidence functions.

Proof. (1) (Convolution is associative) Since the number of summands is finite, we have:

$$[(f * g) * h](x,y) = \sum_{x \le z \le y} (f * g)(x,z) \cdot h(z,y) =$$

$$=\sum_{x\leq z\leq y}[\sum_{x\leq w\leq z}f(x,w)\cdot g(w,z)]\cdot h(z,y)=\sum_{x\leq w\leq y}f(x,w)\cdot [\sum_{w\leq z\leq y}g(w,z)\cdot h(z,y)]=$$

$$= \sum_{x < w < y} f(x, w) \cdot (g * h)(w, y) = [f * (g * h)](x, y).$$

(2) (Convolution is left distributive) Since multiplication in k is left distributive, we have:

$$[f*(g+h)](x,y) = \sum_{x \le z \le y} f(x,z) \cdot (g+h)(z,y) = \sum_{x \le z \le y} f(x,z) \cdot [g(z,y) + h(z,y)] = \sum_{x \ge z} f(x,z) \cdot [g(z,y) + h(z,y)] = \sum_{x \ge z} f(x,z) \cdot [g(z,y) + h(z,y)] = \sum_{x \ge z} f(x,z) \cdot [g(z,y) + h(z,y)] = \sum_{x \ge z} f(x,z) \cdot [g(z,y) + h(z,y)] = \sum_{x \ge z} f(x,z) \cdot [g(z,y) + h(z,y)] = \sum_{x \ge z} f(x,z) \cdot [g(z,y) + h(z,y)] = \sum_{x \ge z} f(x,z) \cdot [g(z,y) + h(z,y)] = \sum_{x \ge z} f(x,z) \cdot [g(z,y) + h(z,y)] = \sum_{x \ge z} f(x,z) \cdot [g(z,y) + h(z,y)] = \sum_{x \ge z} f(x,z) \cdot [g(z,y) + h(z,y)] = \sum_{x \ge z} f(x,z) \cdot [g(z,y) + h(z,y)] = \sum_{x \ge z} f(x,z) \cdot [g(z,y) + h(z,y)] = \sum_{x \ge z} f(x,z) \cdot$$

$$=\sum_{x\leq z\leq y}\left[f(x,z)\cdot g(z,y)+f(x,z)\cdot h(z,y)\right]=\sum_{x\leq z\leq y}f(x,z)\cdot g(z,y)+\sum_{x\leq z\leq y}f(x,z)\cdot h(z,y)=$$

$$= (f * g)(x, y) + (f * h)(x, y) = [(f * g) + (f * h)](x, y).$$

(3) (Convolution is right distributive) Since multiplication in k is right distributive, we have:

$$[(f+g)*h](x,y) = \sum_{x \le z \le y} (f+g)(x,z) \cdot h(z,y) = \sum_{x \le z \le y} [f(x,z) + g(x,z)] \cdot h(z,y) = \sum_{x \ge z} [f(x,z) + g(x,z)] \cdot h(z,y) = \sum_{x \ge z} [f(x,z) + g(x,z)] \cdot h(z,y) = \sum_{x \ge z} [f(x,z) + g(x,z)] \cdot h(z,y) = \sum_{x \ge z} [f(x,z) + g(x,z$$

$$= \sum_{x < z < y} [f(x,z) \cdot h(z,y) + g(x,z) \cdot h(z,y)] = \sum_{x < z < y} f(x,z) \cdot h(z,y) + \sum_{x < z < y} g(x,z) \cdot h(z,y) = \sum_{x < z < y} f(x,z) \cdot h(z,y) + \sum_{x < z < y} f(x,z) \cdot h(z,y) = \sum_{x < z < y} f(x,z) \cdot h(z,y) + \sum_{x < z < y} f(x,z) \cdot h(z,y) = \sum_{x < z < y} f(x,z) \cdot h(z,y) + \sum_{x < z < y} f(x,z) \cdot h(z,y) = \sum_{x < z < y} f(x,z) \cdot h(z,y) + \sum_{x < z < y} f(x,z) \cdot h(z,y) = \sum_{x < z < y} f(x,z) \cdot h(z,y) + \sum_{x < z < y} f(x,z) \cdot h(z,y) = \sum_{x < z < y} f(x,z) \cdot h(z,y) + \sum_{x < z < y} f(x,z) \cdot h(z,y) = \sum_{x < z < y} f(x,z) \cdot h(z,y) + \sum_{x < z < y} f(x,z) \cdot h(z,y) = \sum_{x < z < y} f(x,z) \cdot h(z,y) + \sum_{x < z < y} f(x,z) \cdot h(z,y) = \sum_{x < z < y} f(x,z) \cdot h(z,y) + \sum_{x < z < y} f(x,z) \cdot h(z,y) = \sum_{x < z < y} f(x,z) \cdot h(z,y) + \sum_{x < z < y} f(x,z) \cdot h(z,y) = \sum_{x < z < y} f(x,z) \cdot h(z,y) + \sum_{x < z < y} f(x,z) \cdot h(z,y) = \sum_{x < z < y} f(x,z) \cdot h(z,y) + \sum_{x < z < y} f(x,z) \cdot h(z,y) = \sum_{x < z < y} f(x,z) \cdot h(z,y) + \sum_{x < z < y} f(x,z) \cdot h(z,y) = \sum_{x < z < y} f(x,z) \cdot h(z,y) + \sum_{x < z < y} f(x,z) \cdot h(z,y) = \sum_{x < z < y} f(x,z) \cdot h(z,y) + \sum_{x < z < y} f(x,z) \cdot h(z,y) = \sum_{x < z < y} f(x,z) \cdot h(z,y) + \sum_{x < z < y} f(x,z) \cdot h(z,y) = \sum_{x < z < y} f(x,z) \cdot h(z,y) + \sum_{x < z < y} f(x,z) \cdot h(z,y) = \sum_{x < z < y} f(x,z) \cdot h(z,y) + \sum_{x < z < y} f(x,z) \cdot h(z,y) = \sum_{x < z < y} f(x,z) \cdot h(z,y) + \sum_{x < z < y} f(x,z) \cdot h(z,y) = \sum_{x < z < y} f(x,z) \cdot h(z,y) + \sum_{x < z < y} f(x,z) \cdot h(z,y) = \sum_{x < z < y} f(x,z) \cdot h(z,y) + \sum_{x < z < y} f(x,z) \cdot h(z,y) = \sum_{x < z < y} f(x,z) \cdot h(z,y) + \sum_{x < z < y} f(x,z) \cdot h(z,y) = \sum_{x < z < y} f(x,z) \cdot h(z,y) + \sum_{x < z < y} f(x,z) \cdot h(z,y) = \sum_{x < z < y} f(x,z) \cdot h(z,y) + \sum_{x < z < y} f(x,z) \cdot h(z,y) = \sum_{x < z < y} f(x,z) \cdot h(z,y) + \sum_{x < z < y} f(x,z) \cdot h(z,y) = \sum_{x < z < y} f(x,z) \cdot h(z,y) + \sum_{x < z < y} f(x,z) \cdot h(z,y) = \sum_{x < z < y} f(x,z) \cdot h(z,y) = \sum_{x < z < y} f(x,z) \cdot h(z,y) = \sum_{x < z < y} f(x,z) \cdot h(z,y) = \sum_{x < z < y} f(x,z) \cdot h(z,y) = \sum_{x < z < y} f(x,z) \cdot h(z,y) = \sum_{x < z < y} f(x,z) \cdot h(z,y) = \sum_{x < z < y} f(x,z) \cdot h(z,y) = \sum_{x < z < y} f(x,z) \cdot h(z,y) = \sum_{x <$$

$$= (f * h)(x, y) + (g * h)(x, y) = [(f * h) + (g * h)](x, y).$$

(4) (Convolution identity) Let $\delta \in A_k(P)$ be defined for all $x, y \in P$ such that

$$\delta(x,y) = \left\{ \begin{array}{l} 1 \ , \ if \ x = y \\ 0 \ , \ if \ x \neq y \end{array} \right. .$$

Then $(f * \delta)(x, y) = \sum_{x \leq z \leq y} f(x, z) \cdot \delta(z, y) = f(x, y)$. Also, $(\delta * f)(x, y) = \sum_{x \leq z \leq y} \delta(x, z) \cdot f(z, y) = f(x, y)$. Therefore, δ is an identity for $A_k(P)$ under convolution.

Finally, we have that $A_k(P)$ is a ring with identity.

Let $\varphi: k \to A_k(P)$ be defined by $\varphi(a) := \delta_a := a \cdot \delta, \forall a \in k$.

For $\forall a, b \in k$ we have $\varphi(a+b) = \delta_{a+b} = (a+b) \cdot \delta = (a \cdot \delta) + (b \cdot \delta) = \delta_a + \delta_b = \varphi(a) + \varphi(b)$. Also, $\varphi(ab) = \delta_{ab} = (ab) \cdot \delta = (a \cdot \delta) * (b \cdot \delta) = \delta_a * \delta_b = \varphi(a) * \varphi(b)$. Thus φ is a ring homomorphism.

Since multiplication in k is commutative, it follows from the above that $\delta_a * \delta_b = (ab) \cdot \delta =$ $(ba)\cdot\delta=\delta_b*\delta_a$ so that $\varphi(k)\subseteq Z(A_k(P))$. Because $\delta_{1_k}=1_k\cdot\delta=\delta$, we have $\varphi(1_k)=1_{V(Int(P),k)}$. Finally we obtain that $(A_k(P), \varphi)$ is an algebra over k.

Theorem 2. Let $f \in A(P)$. The following conditions are equivalent:

- 1. f has a left inverse;
- 2. f has a right inverse;
- 3. f has a two-sided inverse;
- 4. for all $x \in P$, $f(x, x) \neq 0$.

If f has any inverse, then it is the unique two-sided inverse of f. *Proof.* Assume $f \in I(P)$.

 $(1 \Leftrightarrow 4)$ Suppose $g \in I(P)$ is a left inverse of f, i.e. $g * f = \delta$. This is true if and only if:

$$g(x,y) = \begin{cases} f(x,x)^{-1} & \text{if } x = y \\ -f(y,y)^{-1} \left[\sum_{x < z < y} g(x,z) f(z,y) \right] & \text{if } x < y \end{cases},$$

the second case is due to the fact that $(g*f)(x,y) = \sum_{x \le z < y} g(x,z) f(z,y) + g(x,y) f(y,y)$. Thus g exists if and only if for all $x \in P$, we have $f(x, \bar{x}) \neq 0$.

 $(2 \Leftrightarrow 4)$ Suppose $h \in I(P)$ is a right inverse of f. Similar to the above argument:

$$h(x,y) = \begin{cases} f(x,x)^{-1} & \text{if } x = y \\ -f(x,x)^{-1} \left[\sum_{x < z \le y} f(x,z) h(z,y) \right] & \text{if } x < y \end{cases},$$

so that h exists if and only if for all $x \in P$, we have $f(x, x) \neq 0$.

 $(3 \Leftrightarrow 4)$ A two-sided inverse is necessarily a left and right inverse. Thus this result follows from the previous arguments.

Let's prove the unique of this inverse.

Suppose that g is a left inverse of f. Then the theorem implies the existence of a right inverse of f, let it be h, so $g*f=\delta=f*h$. The theorem also provides a two-sided inverse f' of f. Then $g=g*\delta==g*(f*f')=(g*f)*f'=\delta*f'=f'*f'=f'*\delta=$

 $= f' * (f * h) = (f' * f) * h = \delta * h = h$. Therefore, g = f' = h, proving that any inverse is two-sided and unique.

3 Some incidence functions

Through this section we will assume that P is a locally finite poset. Of all the functions from $A_k(P)$, there are a few of particular interest.

Delta function

We already saw that delta function δ is the identity of $A_k(P)$ and is defined for all $x, y \in P$ such that

$$\delta(x,y) = \left\{ \begin{array}{l} 1 \ , \ if \ x = y \\ 0 \ , \ if \ x \neq y \end{array} \right. .$$

Also we have that $\delta_a = a \cdot \delta$, $\forall a \in k$.

Zeta and Chain functions

Another important function from the incidence algebra $A_k(P)$ is zeta function ζ , defined such that: $\zeta(x,y) := 1, \forall x \leq y \text{ in } P$.

Then for all $x \leq y$ from P we have $\zeta^2(x,y) = \sum_{x \leq z \leq y} \zeta(x,z) \cdot \zeta(z,y) = \sum_{x \leq z \leq y} 1 \cdot 1 = \sum_{x \leq z \leq y} 1 = |[x,y]|$. Therefore, $\zeta^2(x,y)$ counts the numbers of elements in [x,y]. Notice that:

$$(\zeta - \delta)(x, y) := \begin{cases} 1 - 1 = 0 & \text{if } x = y \\ 1 - 0 = 1 & \text{if } x < y \end{cases}$$

and

$$(\zeta - \delta)^2(x, y) = \sum_{x \le z \le y} (\zeta - \delta)(x, z) \cdot (\zeta - \delta)(z, y) = \sum_{x < z < y} (\zeta - \delta)(x, z) \cdot (\zeta - \delta)(z, y) = \sum_{x < z < y} 1$$

which is equal to the number of chains of [x,y] of length 2.

By induction it follows that $(\zeta - \delta)^k(x, y)$ counts the number of chains of [x, y] of length k. Thus $\eta := \zeta - \delta$ is the *chain function*.

A sequence of functions $f_1, f_2, f_3, ...$ of $A_k(P)$ converges to a function $f \in A_k(P)$ if for all intervals [x, y] from P, does exist an $N \in \mathbb{N}$ such that for every $n \geq N$, $f_n(x, y) = f(x, y)$. This defines a topology on $A_k(P)$.

Now consider:

$$(\delta_2 - \zeta)(x, y) := \begin{cases} 2 - 1 = 1 & \text{if } x = y \\ 0 - 1 = -1 & \text{if } x < y \end{cases}.$$

From the theorem above result that $\delta_2 - \zeta$ have an inverse:

$$(\delta_2 - \zeta)^{-1} = (\delta - (\zeta - \delta))^{-1} = \sum_{k=0}^{\infty} \eta^k,$$

because $\sum_{k=0}^{\infty} \eta^k$ converges in $A_k(P)$. Therefore, because of the interpretation of η we obtain that $(\delta_2 - \zeta)^{-1}(x, y)$ counts the number of all chains from the interval [x, y].

Lambda and Cover functions

Another function from the incidence algebra $A_k(P)$ is lambda function λ defined for every interval [x, y] such that:

$$\lambda(x,y) := \left\{ \begin{array}{l} 1 \ if \ x = y \ or \ y \ covers \ x \\ 0 \ else \end{array} \right..$$

We observe that:

$$(\lambda - \delta)(x, y) := \left\{ \begin{array}{l} 1 \ if \ y \ covers \ x \\ 0 \ else \end{array} \right. .$$

Let's denote $\kappa := \lambda - \delta$ and we call it *cover function*.

We have $\kappa^2(x,y) = \sum_{x \le z \le y} \kappa(x,z) \cdot \kappa(z,y)$ and because $\kappa(x,z) \cdot \kappa(z,y) \ne 0$ only if y covers z, means that the chain x < z < y is saturated. Because the interval [x,y] is a finite one the condition that the chain x < z < y to be saturated is equivalent with that to be a maximal chain. Finally, $\kappa^2(x,y)$ counts the number of maximal chains of length 2 from the interval [x,y]. In conclusion we have that $\kappa^k(x,y)$ give us the number of maximal chains of length k in the interval [x,y].

Now consider

$$(\delta - \kappa)(x, y) := \begin{cases} 1 - 0 = 1 & if \ x = y \\ 0 - 1 = -1 & if \ y \ covers \ x \\ 0 - 0 = 0 & else \end{cases}.$$

From the theorem above it results that $\delta - \kappa$ have an inverse: $(\delta - \kappa)^{-1} = \sum_{k=0}^{\infty} \kappa^k$, the sum is valid because $\sum_{k=0}^{\infty} \kappa^k$ converges in $A_k(P)$ for every interval [x,y] in P. We obtain that $(\delta - \kappa)(x, y)$ gives us the number of all maximal chains in [x, y].

Möbius function.

From the theorem we obtain that zeta function ζ possesses an inverse in $A_k(P)$.

The Möbius function is $\mu := \zeta^{-1}$.

The relation
$$\mu * \zeta = \delta$$
 is equivalent to the following recursive formula of μ :
$$\mu(x,y) := \begin{cases} 1 & \text{if } x = y \\ -\sum_{x \leq z < y} \mu(x,z) & \text{if } x < y \end{cases}$$

$$\text{since } (\mu * \zeta)(x,y) = \sum_{x \leq z \leq y} \mu(x,z) \cdot \zeta(z,y) = \sum_{x \leq z \leq y} \mu(x,z) \cdot 1 = \sum_{x \leq z < y} \mu(x,z) + \mu(x,y) = \delta(x,y)$$

Example 2. 1. In case of the local finite poset of the positive integers ordered by divisibility, we have $\mu(a,b) = \mu\left(\frac{b}{a}\right)$, where the second μ is the classical Möbius function, introduced in number theory in the 19-th century.

- 2. The set of all subsets of E ordered by inclusion is a poset locally finite. In this case the Möbius function is $\mu(S,T)=(-1)^{|T\setminus S|}$, where S and T are finite subsets of E such that $S \subseteq T$.
- 3. The Möbius function for the set of positive integers with the usual order is $\mu(x,y) =$ $\begin{cases} 1 & if \ y-x=0 \\ -1 & if \ y-x=1 \\ 0 & if \ y-x>1 \end{cases}$. This corresponds to the sequence $(1,-1,0,0,0,\ldots)$ of coefficients from

the formal series 1-z, and zeta function ζ corresponds to the sequence (1,1,1,...) of coefficients from $(1-z)^{-1}=1+z+z^2+z^3+\dots$ Delta δ function in this incidence algebra corresponds to the formal series 1.

4. Now, let consider the poset of all partition of a finite set and denote $\sigma \leq \tau$ if σ is a finer partition than τ . Then, the Möbius function is: $\mu(\sigma,\tau)=(-1)^{n-r}(2!)^{r_3}(3!)^{r_4}...((n-1)!)^{r_n}$,

where n is the number of elements of the finer partition σ , r is the number of elements of τ and r_i is the number of the sets from τ which contain exactly i elements from σ .

The inversion formula of Möbius

Theorem 3. Let (P, \leq) be a poset and G an commutative group. Also, let $f, g, h : P \to G$. Then:

1.
$$g(x) = \sum_{x \le y} f(y) \Leftrightarrow f(x) = \sum_{x \le y} \mu(x, y) g(y);$$

2.
$$h(x) = \sum_{y \le x} f(y) \Leftrightarrow f(x) = \sum_{y \le x} \mu(x, y) h(y)$$
.

The proof is in [5].

5 **Applications**

In this section we present some useful applications to the recursive formula and also the inversion formula Möbius.

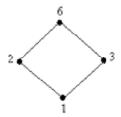
5.1. Remark 4. For any finite poset P does exist a counting $P = \{x_1, x_2, ..., x_n\}$ such that if $x_i < x_i$ then i < j.

Suppose that P is $P = \{x_1, x_2, ..., x_n\}$. Then we can associate to zeta function ζ : $P \times P \to \mathbf{Z}$, $\zeta(x,y) := 1$, $\forall x \leq y$ in P, a matrix $A \in M_n(\mathbf{Z})$ like:

$$A = \begin{pmatrix} 1 & \zeta_{12} & \zeta_{13} & \dots & \zeta_{12} \\ 0 & 1 & \zeta_{23} & \dots & \zeta_{2n} \\ \dots & \dots & \dots & \dots \\ 0 & 0 & 0 & 0 & 1 \end{pmatrix} \text{ where } \zeta_{ii} = 1, \forall i = \overline{1, n}.$$

We know that the Möbius function $\mu := \zeta^{-1}$ is the inverse of zeta function, then the matrix $B = (\mu_{ij})_{i,j=\overline{1,n}}$ is the inverse of A.

Example 3. The poset $D_6 = \{1, 2, 3, 6\}$ with the partial order given by divisibility have the Hasse diagram:



We have the matrix $A = \begin{pmatrix} 1 & 1 & 1 & 1 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 \end{pmatrix}$ for the zeta function of D_6 , and $B = A^{-1} = \begin{pmatrix} 1 & -1 & -1 & 1 \\ 0 & 1 & 0 & -1 \\ 0 & 0 & 1 & -1 \\ 0 & 0 & 0 & 1 \end{pmatrix}$ is the matrix associated to the Möbius function of D_6 .

$$\begin{pmatrix} 1 & -1 & -1 & 1 \\ 0 & 1 & 0 & -1 \\ 0 & 0 & 1 & -1 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$
 is the matrix associated to the Möbius function of D_6

Let to the recursive formula of μ :

$$\mu(1,1) = 1; \mu(2,2) = 1; \mu(3,3) = 1; \mu(4,4) = 1$$

$$\mu(1,2) = -\mu(1,1) = -1$$

$$\mu(1,3) = -\mu(1,1) = -1$$

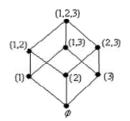
$$\mu(1,6) = -\mu(1,1) - \mu(1,2) - \mu(1,3) = -1 + 1 + 1 = 1$$

 $\mu(2,1) = 0, \mu(3,1) = 0; \mu(3,2) = 0; \mu(4,1) = 0; \mu(4,2) = 0; \mu(4,3) = 0;$ $\mu(2,3) = 0$ because in D_6 ;

$$\mu(2,6) = -\mu(2,2) = -1;$$

$$\mu(3,6) = -\mu(3,3) = -1.$$

Example 4. The poset $B_3 = \{\phi; \{1\}; \{2\}; \{3\}; \{1,2\}; \{1,3\}; \{2,3\}; \{1,2,3\}\}$ with the partial order given by inclusion have the Hasse diagram:



We have the matrix
$$A = \begin{pmatrix} 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\ 0 & 1 & 0 & 0 & 1 & 1 & 0 & 1 \\ 0 & 0 & 1 & 0 & 1 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 & 0 & 1 & 1 & 1 \\ 0 & 0 & 0 & 0 & 1 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \end{pmatrix}$$
 for the zeta function of B_3 .

Möbius function of B_3 . This is due to the recursive formula of μ :

$$\mu(\phi,\phi) = \mu(\{1\},\{1\}) = \mu(\{2\},\{2\}) = \mu(\{3\},\{3\}) = \mu(\{1,2\},\{1,2\}) = \mu(\{1,2\},\{1,2\}) = \mu(\{1,3\},\{1,3\}) = \mu(\{2,3\},\{2,3\}) = \mu(\{1,2,3\},\{1,2,3\}) = 1;$$

$$\mu(\{1\},\phi) = \mu(\{2\},\phi) = \mu(\{2\},\{1\}) = \mu(\{3\},\phi) = \mu(\{3\},\{1\}) = \mu(\{3\},\{2\}) = \mu(\{1,2\},\phi) = \mu(\{1,2\},\{1\}) = \mu(\{1,2\},\{2\}) = \mu(\{1,2\},\{3\}) = \mu($$

$$\begin{split} &= \mu(\{1,3\},\phi) = \mu(\{1,3\},\{1\}) = \mu(\{1,3\},\{2\}) = \mu(\{1,3\},\{3\}) = \mu(\{1,3\},\{1,2\}) = \\ &= \mu(\{2,3\},\phi) = \mu(\{2,3\},\{1\}) = \mu(\{2,3\},\{2\}) = \mu(\{2,3\},\{3\}) = \mu(\{2,3\},\{1,2\}) = \\ &\mu(\{2,3\},\{1,3\}) = \mu(\{1,2,3\},\phi) = \mu(\{1,2,3\},\{1\}) = \mu(\{1,2,3\},\{2\}) = \mu(\{1,2,3\},\{3\}) = \\ &= \mu(\{1,2,3\},\{1,2\}) = \mu(\{1,2,3\},\{1,3\}) = \mu(\{1,2,3\},\{2,3\}) = 0 \\ &\mu(\phi,\{1\}) = -\mu(\phi,\phi) = -1; \\ &\mu(\phi,\{2\}) = -\mu(\phi,\phi) = -1; \\ &\mu(\phi,\{3\}) = -\mu(\phi,\phi) = -1; \\ &\mu(\phi,\{1,3\}) = -\mu(\phi,\phi) - \mu(\phi,\{1\}) - \mu(\phi,\{2\}) = -1 + 1 + 1 = 1; \\ &\mu(\phi,\{2,3\}) = -\mu(\phi,\phi) - \mu(\phi,\{1\}) - \mu(\phi,\{3\}) = -1 + 1 + 1 = 1; \\ &\mu(\phi,\{2,3\}) = -\mu(\phi,\phi) - \mu(\phi,\{2\}) - \mu(\phi,\{3\}) = -1 + 1 + 1 = 1; \\ &\mu(\phi,\{1,2,3\}) = -\mu(\phi,\phi) - \mu(\phi,\{1\}) - \mu(\phi,\{2\}) - \mu(\phi,\{3\}) - \mu(\phi,\{1,2\}) - \mu(\phi,\{1,3\}) \\ &-\mu(\phi,\{2,3\}) = -1 + 1 + 1 + 1 - 1 - 1 = -1; \\ &\mu(\{1\},\{2\}) = \mu(\{1\},\{2,3\}) = \mu(\{1\},\{1,3\}) = \mu(\{1\},\{1,2\}) = -1; \\ &\mu(\{1\},\{1,2,3\}) = -\mu(\{1\},\{1\}) - \mu(\{1\},\{1,2\}) = -1; \\ &\mu(\{1\},\{1,2,3\}) = -\mu(\{1\},\{1\}) - \mu(\{1\},\{1,2\}) = -1; \\ &\mu(\{2\},\{2,3\}) = -\mu(\{2\},\{2\}) = -1; \\ \end{pmatrix}$$

$$\mu(\{2\}, \{1, 2, 3\}) = -\mu(\{2\}, \{2\}) - \mu(\{2\}, \{1, 2\}) - \mu(\{2\}, \{2, 3\}) = -1 + 1 + 1 = 1;$$

$$\mu(\{3\}, \{1, 3\}) = -\mu(\{3\}, \{3\}) = -1;$$

$$\mu(\{3\}, \{2, 3\}) = -\mu(\{3\}, \{3\}) = -1;$$

$$\mu(\{3\},\{1,2,3\}) = -\mu(\{3\},\{3\}) - \mu(\{3\},\{1,3\}) - \mu(\{3\},\{2,3\}) = -1 + 1 + 1 = 1;$$

$$\mu(\{1,2\},\{1,2,3\}) = -\mu(\{1,2\},\{1,2\}) = -1;$$

$$\mu(\{1,3\},\{1,2,3\}) = -\mu(\{1,3\},\{1,3\}) = -1;$$

$$\mu(\{2,3\},\{1,2,3\}) = -\mu(\{2,3\},\{2,3\}) = -1.$$

have
$$A = \begin{pmatrix} 1 & 1 & 1 & 1 & 1 \\ 0 & 1 & 1 & 1 & 1 \\ 0 & 0 & 1 & 1 & 1 \\ 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 & 1 \end{pmatrix}$$
 and $B = A^{-1} = \begin{pmatrix} 1 & -1 & 0 & 0 & 0 \\ 0 & 1 & -1 & 0 & 0 \\ 0 & 0 & 1 & -1 & 0 \\ 0 & 0 & 0 & 1 & -1 \\ 0 & 0 & 0 & 0 & 1 \end{pmatrix}$, and in generally for a fixed positive integer $n \in \mathbb{N}$ and a poset $P = \{1, 2, 3, ..., n\}$ with the usual order we

obtain
$$A = \begin{pmatrix} 1 & 1 & 1 & \dots & 1 \\ 0 & 1 & 1 & \dots & 1 \\ 0 & 0 & 1 & \dots & 1 \\ \dots & \dots & \dots & \dots & \dots \\ 0 & 0 & 0 & \dots & 1 \end{pmatrix} \in M_n(\mathbf{R}) \text{ and } A^{-1} = \begin{pmatrix} 1 & -1 & 0 & \dots & 0 \\ 0 & 1 & -1 & \dots & 0 \\ 0 & 0 & 1 & \dots & 0 \\ \dots & \dots & \dots & \dots & \dots \\ 0 & 0 & 0 & \dots & 1 \end{pmatrix}.$$

For functions f,g defined on the set ${\bf N}$ of positive integers we have:

$$f(n) = \sum_{d/n} g(d) \Leftrightarrow g(n) = \sum_{d/n} \mu\left(\frac{n}{d}\right) f(d)$$
, for all $n \in \mathbb{N}$.

 $f(n) = \sum_{d/n} g(d) \Leftrightarrow g(n) = \sum_{d/n} \mu\left(\frac{n}{d}\right) f(d)$, for all $n \in \mathbb{N}$. 5.3. If we consider the set $P = \{1 < 2 < 3 < ... < n\}$ we have that the Möbius function associated to P is:

$$\mu(i,j) = \begin{cases} 1 & if \ i = j \\ -1 & if \ j = i+1 \\ 0 & else \end{cases}.$$

Then, for any functions $f, g, h: P \to G$, G is an commutative group, we have the relations:

$$g(m) = \sum_{i=m}^{n} f(i) \Leftrightarrow f(m) = g(m) - g(m+1)$$
$$h(m) = \sum_{i=0}^{m} f(i) \Leftrightarrow f(m) = h(m) - h(m-1)$$

And this is an application to the inversion formula of Möbius.

5.4. Let X be a finite set and P = P(X) with the relation given by inclusion. We have that the Möbius function of P(X) is:

$$\mu(A, B) = (-1)^{|B-A|}$$
 for $A \subset B$.

Then, for any functions $f,g,h:\mathcal{P}$ $(P)\to G$, G is an commutative group, we have the relations:

$$g(A) = \sum_{A \subset B} f(B) \Leftrightarrow f(A) = \sum_{A \subset B} (-1)^{|B-A|} g(B)$$

$$h(A) = \sum_{B \subset A} f(B) \Leftrightarrow f(A) = \sum_{A \subset A} (-1)^{|A-B|} h(B).$$

References

- [1] Bogart, K., Ordered sets, 2001
- [2] Cameron, P.J., *Posets*, The Encyclopedia of Design Theory, 2003
- [3] Davey, B.A., Priestley, H.A., Introduction to lattices and order, Cambridge University Press, Cambridge, 1990
- [4] Ehrenborg, R., On poset and hopf algebras, Advances in mathematics 119, 1-25 (1996)
- [5] Nastasescu, C., Nita, C., Vraciu, C., Bazele algebrei, Ed. Academiei, 1986
- [6] Rota, G.C., On the foundations of combinatorial theory, I: Theory of Möbius functions, Z.Wahrscheinlichkeitstheorie 2 (1964), 340-368
- [7] Rota, G.C., Mullin, R., On the foundations of combinatorial theory, III: Theory of binomial enumeration, B.Harris (ed.), Graph theory and its applications, Acad.Press (1970), 167-213
- [8] Vraciu, C., Vraciu, M., Elemente de aritmetica, Ed All, 1998

Manuscript received: 15.03.2009 / accepted: 01.06.2009