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Abstract: The purpose of this paper is to present some sufficient conditions ensur-
ing existence, uniqueness and global stability of almost periodic solution of the BAM neural
networks with variable coefficients and delays, by using the Banach fixed point theorem and
constructing suitable Lyapunov function.
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1 Introduction

Neural networks have started to be used for the last years in many fields such as pattern
recognition, automatic control, function approximation, vocal recognition, financial predic-
tion, risking management and so on [4],[6]. This domain attracted many scholars, based on
the stability of bidirectional associative memory neural networks with and without delays
[1].

There have been obtained some sufficient conditions for globally asymptotic stability of
delayed bidirectional associative memory networks (BAM). Moreover, authors research the
periodic oscillatory solution of BAM networks with delays in the case of constant coefficients
[2]. Also, authors in [7] investigated the existence and stability of positive periodic solution by
using the Krasnoselskii fixed point theory. It is well known that studies on neural dynamical
systems not only imply a discussion of stability properties, but also imply many dynamic be-
haviours such as periodic oscillatory behaviour, almost periodic oscillatory properties, chaos,
and bifurcation. In applications, almost periodic oscillatory is more accordant with fact. To
the best of our knowledge, few authors have considered almost periodic oscillatory solutions
for BAM networks, most of them study the stability, periodic oscillation of BAM networks
in the case of constant coefficients.

In this paper, we discuss almost periodic oscillatory solutions of BAM networks with
variable coefficients and delays, present some simple sufficient conditions obtained in [3] by
using the Banach fixed point theorem and constructing suitable Lyapunov function, ensuring
the existence and global asymptotic stability of almost periodic solution.

In the end, we give an example to illustrate the feasibility of these results.

2 Preliminaries

Consider the BAM networks with variable coefficients

G}iﬁi - +an ) fi (s (t = 150)) + 1 () (1a)
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% = —b; (t)y; (t) + ;%‘ (t) fi (zi (t — 045)) + J; (t) (1b)

where i = 1,n, j = 1,p, z; (t) and y; () are the activations of the i and the j neurons,
respectively pj; (t), ¢i; (t) are the connection weights at the time ¢, I; () and J; (t) denote
the external inputs at time ¢. The numbers 7;; and o;; are nonnegative constants, which
correspond to the finite speed of the axonal signal transmission.

Throughout this paper, we always assume that a; (t), b; (t), pji (t), ¢i; (¢), L; (t), J; (t) are
continuous almost periodic functions.

Moreover, a; (t), b; (t) are positive,

0 <inf{a;i ()} =a;, 0<inf{b;(1)}="b;,

pi = sup {|pji (1)} < +oo, ¢;; = sup {|g;; ()|} < +oo,
teR teR

I = sup {|1; (t)|} < +oo, J; =sup {|J; ()|} < +oc.
teR teR

Furthermore, the signal functions f; possess the following properties:
(H1) f; are bounded on R, for all i = 1, max {n,p};
(H2) For i = 1, max {n, p}, there exists a number y; > 0 such that

\fi () = fi ()] < pile =yl
The initial conditions associated to (1a), (1b) are connected the form

zi (t) = ®; (s),s € [-7,0],7 = 112%32 1%1?5}; {mii},

y; (t) = Wi (s),s € [-0,0],0 = max max {oji}

where ®@; (s), ¥, (s) are continuous almost periodic functions on R.
For any solution z* (¢) = (z* (1), y* ()", ie.

2 ()= (01 (8), 25 (1) ey (0,57 (1) 93 (8) 5o ()T

of system (1a),(1b) we define the norm

@ =] = sw {5 @0 -0

3 Existence of almost periodic solution
For an arbitrary vector

2(t) = (1 (t) 20 (t) .-, 20 (£) , 11 (t),yg(t),...,yp(t))T

we define the norm
|2 (t)[] = max |z; ()] + max |y; ()]
i=1,n Jj=Lp

Denote
Sn+p: {Z‘z:(¢13®27'"7¢n’\111’\112"”’\11p)T}’
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where P, ¥; are continuous almost periodic functions on R,  with

For any z € S"?  we define

[z} = sup ||z (£)]| = sup max |®; ()] + sup max |[¥; (¢)],
teR teR =1Ln teR J=L.p

the induced module. Then S™*? is a Banach space.

Theorem 3.1. [3].
In addition to (HI) and (H2), suppose further that

;pﬁu] > i
(H3) r = max { =—— +max{ =— 3 <1
1=1,n a; J=Lp b;
(H4)
t+T
M [a;] = lim a; (s)ds >0
T—oo [y
t+T
M [bj] = lim bj (s)ds > 0,
T—oo [y

where i =1,n and j = 1, p.
Then there is a unique periodic solution of system (1a)+(1b) in the region ||z — z|| < £L,

-Tr

+ J+

wzthl—max{I }—f-max{ }and
i=1,n (& j=1,p Lb;

ZO:(A17A2a---7AnaB17B29"'7Bn)7

where A; = ffoo e I ‘“(“)d“I ds, Bj= f eI bitwdu 1. (s)ds fori=T1,n and j =1,p.

Proof. For any (P, \I!)T = (P, Py,..., D, Uy, Uy, ..., \pr)T € S"P we consider the almost
solution Z(30)7 of nonlinear almost periodic differential equation

dd? = —ai (8) % () + iji (t) f5 (W5 (t = 750)) + L (1), (2a)

Ui )+ Z @i (1) f; (@i (= 037)) + J; (1) , (2D)

For i = 1,n, we denote

C; = /t e Js ailwadu [iji (s) f5 (Y5 (s = 750)) + I (5)] ds

and for j =1, p,
L t
_D] = / 6_fs b;( [Z le S — UZ])) + J] (S)] ds

The solution 24 g7 of (1) can be expressed as following

Z(<I>,\IJ)T = (CI,CQ, Ce ,Cn,Dl,DQ, RN Dp) .
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Now we define a mapping 1" : S"*P — S"*P |
T ((b, \I,) (t) — Z(@,\I])T'

Let B* = {z|z € S™'P, ||z — z|| < ££.} be the closed ball from S™* with radius {---. Then
B* is a closed convex subset of S”“’ According to the definition of the norm of Banach
space S™P. we have

|20l = sup max
1=1n

ftoo - fst ai(u)d’u[i (S)dS‘

+ sup max
teR J=Lp

<supmax [*_|I; (s)] e J; ai(wydugg
teR =1n

f_too b 0|

+supmax [ |J; (s)] e J3 bi(wdugg
teR J=Lp

Al JF
<max{ }+max{ }:I.
i=1,;n La; j=1,p b

Therefore, ||z]] < ||z — 20| + [|20]| = 1% + I = L. It could be proved that the mapping T
is a self-mapping from B* to B*.

Then, we prove that the mapping T is a contraction mapping of B. In fact, in view of
(H1) and (H2), for any z1; z2 2 B, where 21, 20 € Bx, where

T
21 = (€I7€2a"'7571777177727"'77712) 3

Z?:((prOQa--wgona,lvbla,lvb?a"'aqvbp)’r?

we have

IT (21) — T (22)|| = sup max{‘ffoo o [ ai(u)du

teR =Ln

];sz‘ () (fi (& (s = 75)) — fi (95 (s — 750))) ds

}

t _ [ty
+ sup max { ‘f_oo e~ Js bi(w)du
teRJ Lp

3 (5 (5 = ) = fo v s - am))\}

< sup max {/ i (=) [ZP 11 1€ (s = 750) — 05 (s — Tji)|] }

teR t=1n
g [aminie et
t i (t—=s) p +
a7 (t-s
< stgﬂglm%{/_ooe i ;pﬂﬂj 21 = Z2||d3}
_— n
s [ Smta e
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p n
+
> Djilt > q;;/iz'
J=1 i=1
+ max

i=1,n a; j=1,p by

lz1 = 22| = |21 = 2]

Noting that r < 1, it is clear that 7" is a contraction mapping. Thus, 1" possesses a unique
fixed point z* € B*, that is T (z*) = z*. Then, by (2a) and (2b), (z*,y*)" satisfies (1a) and
(1b). So, (z*,y*)" is a unique periodic solution of (1a) and (1b) in B*. O

4 Global asymptotic stability of almost periodic solution

Set these:
ui (1) = @i (t) = 7 (1),
gi (ui (t = 03)) = fi (ui (t = 035) + 27 () — fi (a7 (1)),
gi (v (t=735)) = [ (v; (t —75) + 5 (1) — f; (v (1)) -
Then

|9 (ui (t = 03))| < i ui (¢ = 035)]
|95 (05 (¢ = 733))| < g |vs (€ = 735)]
fori=1,2,....,nand j=1,2,...,p
It is easy to see that system (1a) and (1b) can be reduced to the following system

dui
ar )+ ijz 95 (vj (t = 75)) (3a)

d?)j
E = — + Z qzj gZ UZ 0-74.])) (3b)

Theorem 4.1. [3].
Assume that the signal functions f;, i = 1,max{n,p} satisfy the hypotheses (H1) and
(H2), suppose furthermore that (H3) and (H4) hold. If the system parameters satisfy the

following conditions

P
(H5) > (pj+ +u?q;) < 2a;, Z (q +,ulp ) < 2b;,
J:]_ =1

then the almost periodic solution of the system (1a), (1b) is global asymptotically stable.

Proof. Cousider the Lyapunov functional V' (¢) defined by

V() =Vi(t) +Va(t),

n P
=D u () + Y vi()
=1 j=1
P P n ¢
> D wip) / 2(8)d8+22u?q§/ uf (s)ds.
=1 j=1 t—0ij

t=Tji j=1 i=1

n

By calculating the derivative of the Vi (¢) and V4 (¢) along the solutions of (3) and with
(H5), we have that 9~ < 0. Therefore, every solutions of (1a) and (1b) remains bounded for

all £ > 0, then the derlvatlves %, dvjit( also remain bounded for all ¢ > 0, which implies

that u; (), v; (t) are uniformly continuous on [0, +00).
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It follows that V (¢) + [, 2 u? (s) rids + fO (s)sjds < V (0). Thus u, (t), v;(t) €
1

L1 [O, +OO)
In the end, we can get that lim w; (¢) =0, lim v; (t) = 0. O
t—00 t—00
5 Example

Consider the following simple BAM networks with periodic coefficients and delays,

dxi

T +Zpﬂ ) fi (y; (¢ = 2m)) + L; (2)
%Z— +Zq ) fi (@ (t —27)) + J; ()
dt ij i (g 7

where I; (t)

=sint, J; (t) = cost, O'ij:TjZ'ZQﬂ',fOI“Z,jG{l,Q}.
To take f; (z) = 3

(|$ + 1| - |$ o 1|)7/’l’2 = 1: (&S {1727374}

Again, take

(ay (1), a9 ()" = (3+2cost, 3+ 2sint)”

(by (t) by (1))" = (3+ 2sint, 34 2cost)”
we obtain

(ar.ay)" = (L LY)T, (b7,05)" = (1,1,1)7
(af,a)" = (5,557, F,65)" =(5,5,5)"
M [al] > 0, M[b]] > 0.

Let

g1 (t) q2(t) \ _ [ 0.05cost 0.05cost

@1 (t) gu(t) ) 0.1sint 0.15sint

pi1(t) pia(t) Y _ [ 0.35cost 0.1cost

pa () pao(t) )~ \ 0.15sint 0.15sint
Then

( ah (1) q (t) > ( 0.05 0.05 )
Gy ()¢5 (1) 0.15
< P (t) P (1) > < 0.35 0.1 )
p3 () P () 0.15 0.15

zi: Z ”/h

Moreover, r = max { = + max { = =065<1
1=1,2 =12

Set \; =1, i=1,2,3,4,, we get

Ao ( 2a; + Zpﬂu]) + ZAQﬂq%m ~15<0
A3 (—261‘ + Z%ﬁm) + Z&zﬁ;m =-14<0
=1 =1
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2 2
As (—Qb; + qum> + ) Aipfipe = —1.5 < 0.
=1 i=1

Thus, it follows from Theorem 3.1 and Theorem 4.1 that the unique periodic solution is

globally exponential stable.
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