Journal of Science and Arts 1(2009), 85-88 Valahia University of Târgoviște

FUNCTIONS WITH RESTRICTED CAUCHY KERNEL IMAGE

VASILE POP

Technical University of Cluj-Napoca, 25 George Baritiu Str., 400020, Cluj-Napoca, Romania, e-mail: vasile.pop@math.utcluj.ro

Abstract: In this paper we give a characterization of the functions whose Cauchy kernel image belongs to a subgroup or a linear subspace. The results are in connection with Hyers-Ulam stability of functional equations.

Keywords: Cauchy kernel, group, linear function 2000 Mathematics subject classification: 39B72, 39B82

1 Introduction

Let (G, +) and (H, +) be two commutative groups and $f: G \to U$ a function. The function $C_f: G \times G \to H$,

$$C_f(x,y) = f(x+y) - f(x) - f(y), \quad (x,y) \in G \times G,$$

is called the Cauchy difference [4] or Cauchy kernel [5] of function f.

If $H_0 \subset H$ is an arbitrary subset of H, a condition of the form $C_f(x,y) \in H_0$, $(x,y) \in G \times G$, restricts the image of the Cauchy kernel from the set H to the set H_0 . If H is a linear normed space and B_{ε} is the ball of center zero and radius ε , i.e. $B_{\varepsilon} = \{y \in H \mid ||y|| < \varepsilon\}$ then the condition $C_f(x,y) \in B_{\varepsilon}$, $(x,y) \in G \times G$, leads to the stability problem for the Cauchy functional equation in Hyers-Ulam sense [3], [6]. The first result on the stability of functional equation given by Hyers in 1941, is the next one [3]:

Theorem 1.1. Let X be a linear normed space, Y a Banach space and $\varepsilon > 0$. Then for every function $f: X \to Y$ satisfying

$$||f(x+y) - f(x) - f(y)|| < \varepsilon, \quad x, y \in X,$$

there exists a unique additive function $g: X \to Y$ such that

$$||f(x) - g(x)|| < \varepsilon, \quad x \in X.$$

In this paper we will characterize the functions whose Cauchy kernel image is restricted to a subgroup or a linear space. Contributions on this topic are given in [1], [2], [4].

Paper presented at The VI-th International Conference on Nolinear Analysis and Applied Mathematics (ICNAAM), Târgovişte, 21-22 nov, 2008

2 Functions with Cauchy kernel image in a subgroup

Let (G, +) and (H, +) be two commutative groups, $(H_0, +)$ be a subgroup of (H, +), $(H/H_0, +)$ the quotien group and $p: H \to H/H_0$, $p(x) = x + H_0$, $x \in H$, the canonical projection.

Theorem 2.1. The function $f: G \to H$ satisfies the condition:

$$f(x+y) - f(x) - f(y) \in H_0, \quad (x,y) \in G \times G$$

if and only if the function $g: G \to H/H_0$, $g = p \circ f$ is a group homomorphism.

Proof. The canonical projection $p: H \to H/H_0$ is a surjective homomorphism of group with $\ker p = H_0$.

The condition

$$f(x+y) - f(x) - f(y) \in H_0 = \ker p$$

is equivalent to

$$p(f(x+y) - f(x) - f(y)) = \widehat{0},$$

where $\hat{0} = 0 + H_0 = H_0$ is the zero element of the quotient group H/H_0 . Since p is a homomorphism of group we get:

$$p(f(x+y)) - p(f(x)) - p(f(y)) = \widehat{0}, \quad (x,y) \in G \times G$$

or

$$(p \circ f)(x+y) = (p \circ f)(x) + (p \circ f)(y), \quad (x,y) \in G \times G.$$

By the last relation follows that $p \circ f$ is a homomorphism of groups.

Corolar 2.2. The function $f : \mathbb{R} \to \mathbb{R}$ satisfies the condition

$$f(x+y) - f(x) - f(y) \in \mathbb{Z}$$
, for every $(x,y) \in \mathbb{R} \times \mathbb{R}$

if and only if the function $h: \mathbb{R} \to \mathbb{C}^*$,

$$h(x) = e^{2\pi i f(x)}, \quad x \in \mathbb{R},$$

is a homomorphism of groups.

Proof. The condition h(x+y) = h(x)h(y) leads to

$$e^{2\pi i(f(x+y)-f(x)-f(y))} = 1$$
 or $f(x+y) - f(x) - f(y) \in \mathbb{Z}$.

Remark 2.3. The group $(\mathbb{R}/\mathbb{Z},+)$ is isomorphic with the group (U,\cdot) , where

$$U = \{ z \in \mathbb{C} \mid |z| = 1 \}.$$

The function $\varphi: \mathbb{R} \to \mathbb{C}^*$, $\varphi(x) = e^{2\pi i x}$, $x \in \mathbb{R}$ is a homomorphism from the group $(\mathbb{R}, +)$ to the group (\mathbb{C}^*, \cdot) with $\ker \varphi = \mathbb{Z}$. In view of the isomorphism theorem the group $\mathbb{R}/\ker \varphi$ and $U = \operatorname{Im} \varphi$ are isomorphic. If $p: \mathbb{R} \to \mathbb{R}/\mathbb{Z}$ is the canonical projection $p(x) = x + \mathbb{Z}$, $x \in \mathbb{R}$, the function $g = p \circ f$, $g: \mathbb{R} \to \mathbb{R}/\mathbb{Z}$ is a homomorphism of groups if and only if the function $h: \mathbb{R} \to \mathbb{C}^*$, $h = \varphi \circ g$ is a homomorphism of groups.

3 Functions with Cauchy kernel image in a linear subspace

Let (V, +) and (W, +) be two linear spaces over the same field and W_0 a linear subspace of W.

Theorem 3.1. The function $f: V \to W$ satisfies the condition:

$$f(x+y) - f(x) - f(y) \in W_0, \quad (x,y) \in V \times V,$$

if and only if there exists a linear function $T: W \to W$ with the property $\ker T = W_0$, therefore the function $g: V \to W$, $g = T \circ f$ be additive.

Proof. We choose a basis $\{e_i \mid i \in I\}$ in W_0 which will be extended to a basis $\{e_i \mid i \in I\} \cup \{e'_j \mid j \in J\}$ in W. If we denote by $W_1 = Span\{e'_j \mid j \in J\}$ then W is the direct sum of W_0 and W_1 , i.e. $W = W_0 \oplus W_1$.

The function $T: W \to W$ defined by $T(w_0 + w_1) = w_1, w_0 \in W_0, w_1 \in W_1$ is a linear function with $\ker T = W_0$. The condition

$$f(x+y) - f(x) - f(y) \in W_0 = \ker T$$

is equivalent to

$$T(f(x+y) - f(x) - f(y)) = 0$$

or

$$(T \circ f)(x+y) = (T \circ f)(x) + (T \circ f)(y).$$

This show that $g = T \circ f$ is linear function.

Corolar 3.2. The function $f: \mathbb{C} \to \mathbb{C}$ satisfies the condition

$$f(z_1 + z_2) - f(z_1) - f(z_2) \in \mathbb{R}, \quad z_1, z_2 \in \mathbb{C},$$

if and only if there exists a function $u : \mathbb{R} \times \mathbb{R} \to \mathbb{R}$ and two additive functions $a : \mathbb{R} \to \mathbb{R}$, $b : \mathbb{R} \to \mathbb{R}$ such that:

$$f(x+iy) = u(x,y) + i(a(x) + b(y)), \quad x, y \in \mathbb{R}.$$

Proof. The group $(\mathbb{C}, +)$ is a linear space over \mathbb{R} and $T : \mathbb{C} \to \mathbb{C}$, T(x+iy) = y, $x, y \in \mathbb{R}$, is a linear function with $\ker T = \mathbb{R}$. The function f satisfies the condition of Theorem 3.1, for $W_0 = \mathbb{R}$ if and only if the function $g = T \circ f : \mathbb{C} \to \mathbb{C}$ is additive. Taking account of Theorem 1, from [5], the function $g : \mathbb{C} \to \mathbb{C}$ is additive if and only if there exist additive functions $f_{11}, f_{12}, f_{21}, f_{22} : \mathbb{R} \to \mathbb{R}$ such that:

$$g(x+iy) = f_{11}(x) + f_{12}(y) + i(f_{21}(x) + f_{22}(y)), \quad x, y \in \mathbb{R}.$$

If $f(x+iy) = f_1(x+iy) + if_2(x+iy)$, $x, y \in \mathbb{R}$ where $f_1, f_2 : \mathbb{C} \to \mathbb{R}$, then

$$(T \circ f)(x+iy) = f_2(x+iy), \quad x, y \in \mathbb{R}.$$

From $g = T \circ f$ follows:

$$f_{11}(x) + f_{12}(y) + i(f_{21}(x) + f_{22}(y)) = f_2(x+iy) \in \mathbb{R}, \quad x, y \in \mathbb{R}.$$

Hence $f_{21} = f_{22} = 0$ and $f_2(x + iy) = f_{11}(x) + f_{12}(y), x, y \in \mathbb{R}$ and then

$$f(x+iy) = f_1(x+iy) + i(f_{11}(x) + f_{12}(y))$$

$$= u(x,y) + i(a(x) + b(y)), \quad x, y \in \mathbb{R},$$

where $u: \mathbb{R} \times \mathbb{R} \to \mathbb{R}$ is an arbitrary function and $a, b: \mathbb{R} \to \mathbb{R}$ are additive functions. \square

References

- [1] Baron, K., Volkmann, P., On a theorem of van der Corput, Abh. Math. Sem. Univ. Hamburg, **61**(1991), 189-195.
- [2] Godini, G., Set-valued Cauchy functional equation, Rev. Roumain Math. Pures Appl., **20**(1975), 1113-1121.
- [3] Hyers, D.H., On the stability of the linear functional equation, Proc. Nat. Acad. Sci. USA, 27(1941), 222-224.
- [4] Hyers, D.H., Isac, G., Rassias, Th.M., Stability of functional equations in several variables, Birkhäuser, 1998.
- [5] Kuczma, M., An introduction to the theory of functional equations and inequalities, Polish. Sci. Publ. and Univ. Slaski, Warsawa-Krakov-Katovice, 1985.
- [6] Ulam, S.M., Problems in modern mathematics, Wiley, New York, 1964.

Manuscript received: 05.02.2009 / accepted: 17.05.2009