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Abstract: Modeling of nanomaterials requires realistic description of the system across various 
length and time scales. In order to illustrate how atomistic modeling is being used to determine the 
structure, physical, and chemical properties of materials at the nanoscale, molecular dynamics (MD) 
simulations will be presented for nanoscale assemblies based on carbon nanotubes, diamond surfaces, 
metal alloy nanowires, and ceramics. Some possible applications of atomistic modeling to carbon 
nanotubes, diamond surfaces, metallic nanowires, and organic liquids confined to nanoscale slits and 
structural transitions in ceramics will be also presented. These simulations use recent developments in 
force fields for metals, alloys, ceramics, and various phases of carbon which are also summarized 
here. This gives some glimpse of the enormous role that theory and modeling is likely to play as 
nanoscale science becomes a central theme in the 21st century technology. 
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1.  Introduction 

Nanotechnology, as defined in literature, is concerned with the structures, properties, 
and processes involving materials having organizational features on the spatial scale of 1–300 
nm. At this scale devices may lead to dramatically enhanced performance, sensitivity, and 
reliability with dramatically decreased size, weight, and cost. Indeed these scales can lead to 
new phenomena providing opportunities for new levels of sensing, manipulation, and control. 
However, being much smaller than the wavelength of visible light but much larger than 
simple molecules, it is difficult to characterize the structure and to control the processes 
involving nanomaterials. From the experimental point of view, the fundamental problem in 
the nanoscale region is that the units are too small to see and manipulate and too large for 
single pot synthesis from chemical precursors. Because it is difficult to see what we are doing 
at the nanoscale, it is essential to develop theoretical and computational approaches 
sufficiently fast and accurate that the structure and properties of materials can be predicted for 
various conditions (temperature, pressure, concentrations) as a function of time. In this regard, 
a multiscale modeling approach of the system starting from quantum mechanical modeling to 
describe the electronic structure and optical properties, atomistic molecular dynamics (MD) 
calculations to describe diffusion processes, and meso scale simulation to describe the 
morphology of soft materials takes prominence. 

1.2. Multiscale, hierarchical approach 

Using preemptive theoretical predictions over the properties of new materials 
represents a particular advantage before experimental approaches. This allows the system to 
be designed (adjusted and refined) so as to obtain the optimal properties before the arduous 
experimental task of synthesis and characterization. However, there are significant challenges 
in using theory to predict accurate properties for nanoscale materials. Thus, a cube of 
polyethylene (PE) 100nm on side would have -64 million atoms, much too large for standard 
classical molecular dynamics (MD) and enormously too large for quantum mechanics (QM). 
Thus, the usage of multiscale (MSC) hierarchical strategy is better suited (Figure 1). The idea 
is to start with accurate first principles QM on small system (10s or 100s of atoms) at a level 
sufficient to describe bond breaking and formation processes (reactions). Based on the QM 
results, we then find force fields (FF) to replace the electrons in terms of springs. Using the 
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FF allows classical MD simulations with 1000s of atoms. With current methods and 
hardware, MD is practical up to -1 million atoms, but a million atoms of PE is a cube of only -
25 nm on a side. To treat much larger systems, it is essential to average the atoms into 
collective units (segments, grains, pseudoatoms). This is the mesoscale region at the heart of 
nanoscale technology. Progress is being made in mesoscale simulations, but the demands of 
nanoscale technology require many additional advances. The simulations at the mesoscale can 
then be used to determine the parameters for finite element grids used in continuum 
calculations. 
 

 
Figure 1.  Multiscale computational hierarchy of materials simulations 

1.3. Nanoscale approach 

Nanomaterials may include carbon nanotubes, fullerenes, dendrimers, ceramics, 
zeolites, semiconductors, metals, polymers, and liquid crystals. These might be in the 
vapor/gas, liquid or solid phase (or all three phases may be present and interacting through 
vapor–liquid, solid–liquid, vapor–solid interfaces). The properties needed to predict include: 
 Structural properties: Internal structure (bond topology, distances and angles), 

morphology, microstructure 
 Mechanical properties: Vibrational modes, elastic moduli, yield limits, strength, 

toughness, temperature and pressure effects on mechanical properties (plasticity, yield, 
fracture, creep) 
 Surface properties: Reconstruction, oxidation, adhesion, friction, and wear 
 Transport properties: Diffusion and thermal conductivity 
 Rheological properties: Viscosity and flow of fluids in the nanoscale regime, non-

Newtonian behavior, flow and transport properties of nanoparticles to make electro-
rheological or magneto-rheological fluids, structure–fluid interactions and their effect on 
transport properties, time, and frequency dependence of the flow properties. 
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Forecasting the structure, dynamics, and properties at the nanoscale require substantial 
improvements in theory (FF and simulation methodologies) and the software (the algorithms 
implementation to do the calculations). 

2. Methods for simulating nanoscale materials 

2.1. Quantum mechanics 

QM is the foundation for the theoretical description of materials. QM is particularly 
important for describing processes in which bonds are broken and formed. Only with QM 
accurate barrier heights and bond energies can be obtained. In most recent studies there has 
been remarkable progress in such first principles electronic structure methods; however, the 
calculations are often far too slow for studying the applications of interest to nano-technology. 
Quantum mechanical methods capable of giving accurate barriers for the reactions of 
nanoscale materials: 
 Generalized valence bond GVB, 
 Psuedospectral generalized valence bond PS-GVB, 
 Multireference configuration interaction MR-CI, 
 Gaussian dual space density functional theory GDS-DFT 

2.2. Force fields 

For convenient calculations on large systems, its need to average over electrons from 
QM to obtain a FF that can describe the energy and forces in terms of atomic positions. Using 
results from QM we can develop FF adequate for predicting the energetics needed to simulate 
the structure and properties of nanomaterials. The FF must be accurate enough to obtain the 
correct energy differences for different phases of materials but must also describe the 
intermediate structures involved in phase transformations and interfacial phenomena. 
Standard FF generally use simple springs to represent bonds and angles in describing 
structures and vibrations of molecules. Such simple FF generally does not accurately describe 
the vibrational properties of molecules, which require cross terms and more complicated 
springs. The best FF are fit to the QM using the Hessian-Biased FF (HBFF) approach, which 
allows experimental information (about frequencies, polarizabilities, etc.) to be combined 
with normal mode information from QM. This HBFF approach has been used to develop 
accurate FF for polymers, ceramics, semiconductors, and metals. 

For fast qualitative considerations of new systems, generic FF is suitable for general 
classes of systems. This includes the DREIDING FF (for the main group elements) and the 
Universal FF (UFF) (all elements: any inorganic, organo-metallic, or organic molecules). 
In recent years, critical advances have been made in developing FF for describing: 
 
 metals, where many body interactions play critical role on their physical properties; 
 oxides, ceramics, and zeolites, where competition between ionic and covalent bonding 

is very important, especially in describing polymorphic phase transitions, reactions, defects, 
surface, and interface properties; 
 covalent bonded system such as carbon, hydrocarbons, silicon, germanium and their 

behavior far from equilibrium where the description of bond breaking and formation must be 
included to obtain an accurate description. 

2.3. Molecular dynamics 

Using FF to predict the forces, the coupled sets of Newton’s equations can be solved 
to describe the motion of the N interacting atoms this being referred as MD. The trajectories 
(Ri, Vi; i = 1, N) can be connected (generated by MD) to obtain macroscopic properties 
through the use of statistical mechanics and thermodynamics. MD simulations of hetero-
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geneous nanomaterials may require thousands to millions of atoms to be considered 
explicitly. Accurate evaluation of the long-range interactions (electrostatic and dispersion), 
which decrease slowly with distance, is the most time-consuming aspect for MD simulations 
of such large systems. This cost is order (N2) for N particles. Thus, a system of 10 million 
atoms requires the evaluation of 1014 terms each time step. The standard approach to 
simplifying such calculations, for finite systems, has been to ignore the interaction beyond 
some nonbond cutoff. However, for one million particles this requires maintaining an 
enormous nonbond list and also leads to errors orders of magnitude too large. For periodic 
systems such cutoffs lead to unacceptable errors, requiring Ewald approaches which require 
Fourier transforms. This leads to a scaling of N1.5, totally impractical for systems with million 
atoms. Because nanoscale simulations require simulations of millions of atoms, methods and 
optimized parallel computer programs (MPSim) were developed for efficient high capacity 
MD. Special features include: 
 Cell Multipole Method (CMM) which dramatically reduces the cost of long-range 

Coulomb and van der Waals interactions while retaining high accuracy. The cost scales 
linearly with size, allowing atomic-level simulations for million atom systems. 
 Reduced Cell Multi-pole Method (RCCM) which handles the special difficulties with 

long-range Coulomb interactions for crystals by combining a reduced unit cell plus CMM for 
interaction of the unit cell with its adjacent cells. The cost scales linearly with size while 
retaining high accuracy, allowing simulation of crystals having a million atoms per unit cell 
(the major use is for models of amorphous and semi-crystalline materials). 
 Newton Euler Inverse Mass Operator method (NEIMO) for internal coordinate 

dynamics (e.g., treats torsions only). This allows the solution of the dynamical equations for 
internal coordinates without inverting the mass tensor (moment of inertia tensor). The cost of 
NEIMO is linear in the number of degrees of freedom and small compared to other costs for 
million atom systems. More recently we also developed a new constrained force algorithm 
(CFA) for massively parallel MD simulation of polymers and dendrimers. 
 Steady state MD methods are used to simulate nonequilibrium processes such as 

friction and wear in diamond, metals, and metal oxides. Here, the external work is dissipated 
through material and coupled to a thermal bath using Langevin equation. 

3. Applications of modeling and simulation for nanomaterials 

To summarize some recent applications in nanoscale systems illustrating the role of new 
developments in simulation technology: 

1. Characterization of SWNTs with accurate (QM derived) FF using MD. 
2. MD studies of alkali doped single-walled nanotubes. 
3. Plastic deformations and mechanical behavior of multi-walled nanotubes. 
4. MD Simulation of Friction and Wear Processes on Diamond. 
5. MD Simulation of Friction and Flow Process for iron oxide slabs separated by 8 

nm covered by a SAM and lubricated with n–C16H34. 
6. Plastic deformation behavior of metallic nanowires. 
7. Phase behavior of ceramics under compressive loads. 

Single-Walled Carbon Nanotubes – energetics and structure properties 

Carbon nanotubes were discovered in 1991 by Iijima. Since then, there have been 
many advances in synthesis, in characterization, and in the theoretical understanding of such 
nanotubes. The novel mechanical and electronic properties of these nanotubes suggest many 
applications to nanotechnology. 

The single-walled carbon nanotubes (SWNT) are the simplest carbon nanotubes which 
and they were discovered simultaneously by the Iijima group and an IBM-Caltech team. 
These SWNT, which can be regarded as a graphite sheet rolled-up into a cylinder, show 
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remarkable mechanical and electrical properties. They present tremendous potential as 
components for use in nanoelectronic and nanomechanical device applications or as structural 
elements in various composite materials. Tightly bundled linear ‘ropes’ of SWNT are 
expected to have remarkable mechanical properties, as well as superior electronic and 
magnetic properties. Various levels of theory have been used to characterize properties of the 
SWNT. This includes classical molecular mechanics (MM), lattice dynamics, MD, – tight 
binding QM, and ab initio QM methods. 

Assessing the mechanical stability of SWNT, tubes with three different chiral forms 
(n, n) armchair, (n, 0) zigzag, and (2n, n), must be taken into consideration. Thus for diam-
eters less than 60 Å it was demonstrated that circular SWNT are most stable, but that larger 
SWNT collapse into a shape in which the opposite walls in the middle section are 3.4 Å apart 
(the van der Waals distance) while each end has a nearly circular diameter of ~10.7 Å. To 
mimic long isolated nanotubes, periodic boundary conditions in the c-direction (tube 
direction) have to be imposed. To eliminate the inter tube interactions, the cell parameter a 
and b must be set as 50 times of the circular tube diameter. 

Energy and structural optimizations can be resolved using MPSim. To extract 
mesoscale parameters characterizing the basic energetics of tubes, the tube can be 
approximated as a membrane with a radius of curvature R and a bending modulus of κ. Using 
continuum theory, a tube with wall thickness a and length L has an elastic energy stored of: 
 

 (1) 
thus, the energy per atom becomes: 

 (2) 
 
where N is the number of carbon atoms per slab and E0 is energy per carbon atom for tubes 
with R = ∞ (i.e. flat sheets). Letting , where ρ is the number of carbon atoms per 
unit area of tube wall, we obtain: 
 

 (3) 
 

The armchair SWNT is expected to have the lowest energy for a growing exposed 
edge. Good crystals of bucky tubes have not been reported experimentally. However, the 
mechanical properties can be predicted for crystalline (n,n) armchair, (n,0) zigzag, and (2n,n) 
chiral tubes. These all have similar cross section radii. The MD and MM studies lead to a 
hexagonal closest packing as the most stable form for all three forms. 
 

K-doped SWNT crystals – the structure 

Development of methods to control the catalytic synthesis of SWNT to form ordered 
ropes containing 100s–1000s of tubes gives hope for developing structures useful for new 
generations of nanoscale devices. Recent reports that these SWNT ropes can be doped to form 
metallic conductors give further hope for interesting devices. 
There is no data on the structure for such doped systems. To provide this data the predicted 
minimized crystal structure for armchair (10, 10) SWNT is used. Supposing up to 6 
independent SWNT per unit cell and appropriate numbers of K atoms distributed in various 
ways to which 20 ps of MD is applied to equilibrate the system and quench the structures by 
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minimizing the energy. Then analyzing each case to see if the pattern of K binding sites 
would suggest new structures to build and minimize. For triangular crystals with n up to 2, the 
K intercalates between three tubes, leading to essentially the same spacing as in pristine 
SWNT. 

Figure 3 shows the energy per carbon atom as a function of number of intercalated K 
ions for two different packing schemes (square and triangular) and different doping types: exo 
(K atoms allowed only outside the tubes) and endo (K atoms allowed only inside the tubes). 
Assuming exo K, the global minimum is the triangular structure for K5C80 = KC16. The 
optimum structure has the K packed in the same (2 x 2) pattern observed for intercalated 
graphite, KC8. The difference for the KC16 SWNT is that the K are only on the outside of the 
tube (vide infra), leading to half the amount of K. For n > 7, the K causes significant 
distortions in the tube shells. 

 
Figure 2. Energy per carbon atom for triangular and square packing of K doped SWNT 

Diamond surfaces – MD simulation of friction 

Theoretical investigation of wear and friction is especially important in the design of 
micro-electromechanical systems (MEMS) and nano-electromechanical systems (NEMS). In 
order to describe wear, it is essential that the calculations properly describe bond formation 
and breaking. Thus, we use the GEE-BOD FF. Low friction is a crucial factor in determining 
the performance, efficiency, and durability of MEMS. 
Since silicon is available in large single crystals which can be etched easily to form micron 
scale devices, most MEMS are made of silicon. However, studies have shown that the friction 
between such Si systems is very high, leading to very rapid wear. As a result, the use of 
diamond is proposed for MEMS involving moving parts. In addition to diamond being the 
hardest material, polycrystalline diamond (PCD) has a friction coefficient several times 
smaller than silicon. 

Considering two diamond crystals with hydrogenated surfaces put in contact, the ratio 
between the external force applied for maintaining the moving block at a constant velocity 
and the average calculated normal force of the static block gives the friction coefficient. 

 120



JOURNAL OF SCIENCE AND ARTS 

 
Figure 3. Time evolution of structure under tensile load 

 
Figure 4 shows the running average of the force in the normal direction with respect to sliding 
direction with the sliding velocity maintained at a constant value. The initial oscillations 
represent the approach a steady state. The average normal force is very similar for different 
sliding directions. This indicates that differences in the differential friction coefficients arise 
from differences between the surfaces. Figure 5 presents the running averages of calculated 
friction coefficients. As expected, the xy direction has the lowest friction coefficient while the 
x and y directions are nearly identical. If the two surfaces were perfectly aligned, sliding in 
the x and y directions would have yielded identical friction coefficients. 

    

Figure 4. Average of the normal force 
for constant sliding speed 

Figure 5. Average of friction coefficients 
calculated for different sliding 

di ti
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4. Synopsis 

Properties of interest: surface reactivity, dispersion forces, interfacial structure / bonding / 
adhesion, tensile / shear strength, ductility, fracture, band gap, optical spectra, transport 
(diffusion, electrical conductivity and conductance). 
Materials of interest to industry: metal oxides/nitrides/carbides, polymers, ceramic 
coatings, metal alloys, composites, amorphous structures. 
Predictive models are intended to tell us something about the future. The future is uncertain. 
Predictive models characterize uncertainty about the future. Probability offers the main theory 
suitable for predictive modeling. Constructing predictive models i.e., probability spaces, their 
associated random variables and stochastic processes is very tedious. 
Predictive modeling takes a number of forms and requires a number of components 
– Modeling is needed to make accurate measurements of the dimensions of nanomaterials, 
“size matters” and accurate dimensional measurements are extremely important; 
– Modeling is needed to accurately determine what materials are present; 
– Modeling is needed to understand the materials properties; 
– Modeling is needed to predict the properties; 
– Experimental input data is needed; 
– Agreement between theory and experiment. 
Stochastic differential equations having solutions that give probability law on important 
performance variables & stochastic processes are very rare. The computational burden 
associated with most practical predictive engineering models is very high. 
Premises for accurate simulation and modeling applications: 
– Selecting the appropriate theory for given phenomenon and material 
– Must know approximations made and how they affect outcome (error estimates) 
– Method should give right answer for right reason (correct physics, correct phenomenon) 
Validation of predictions: critical – difficult to design appropriate experiment 
Emerging areas are: Hybrid simulations with nanoparticles and colloids; Polyelectrolyte 
complexation; Supramolecular polymers; Nonequilibrium extensions to coupled flow and 
structure. 
This is an exciting frontier research area that brings together topics from: Theoretical physics 
and applied math; Numerical and computational sciences; Materials science and Real world 
applications. 
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