ON THE IMAGES OF SOME OPEN SETS HAVING THE NON-EMPTY INTERSECTION PROPERTY

DINU TEODORESCU

Valahia University of Targoviste, Faculty of Science and Arts, 130082, Targoviste, Romania

Abstract. Let E and F be normed spaces, $T:E \rightarrow F$ and $V:E \rightarrow F$ satisfying $T(O_1) \cap V(O_2) \neq \phi$ for all O_1, O_2 non-emty open subsets of E. In this paper we present some aspects about the properties of the functions T and V.

Keywords: normed space, discontinuous function, boundness. Mathematics Subject Classification 2010: 46T20.

1. INTRODUCTION

In the paper [1] it is considered functions $f, g: \mathbb{R} \to \mathbb{R}$, which satisfy a condition of the type $f(I) \cap g(J) \neq \phi$ where $I, J \subseteq \mathbb{R}$ are non-empty open intervals. It is studied some properties of the functions f and g about their continuity.

In the monograph [2] it is considered functions $u, v: X \to X$ (where X is a metric space) satisfying $u(K_1) \cap v(K_2) \neq \phi$ for all K_1, K_2 non-empty compact subsets of X and some properties about their boundness are given.

Let *E* and *F* be normed spaces endowed with the norms $\|\cdot\|_{E}$, respectively $\|\cdot\|_{F}$. We consider two functions $T: E \to F$, $V: E \to F$ satisfying the following property:

$$T(O_1) \cap T(O_2) \neq \phi$$
 for all O_1, O_2 non-empty subsets of E (1)

In this paper, firstly, we study the continuity of T, when V satisfies an unboundness condition, extending one of the results from [1]. Secondly we give some remarks about the result obtained in the first part of this paper.

The monograph [3] appears to the References only for nominating one of the many books in which there are presented the basic facts regarding normed spaces, continuity and boundness.

2. RESULTS

Theorem 2.1 Let $T: E \to F$, $V: E \to F$ satisfying (1). If $\lim_{\|x\|_E \to \infty} \|V(x)\|_F = \infty$, then T is

discontinuous at every point $a \in E$.

Proof: Let $a \in E$ and n be a natural number, $n \ge 1$.

Let
$$A_n = B_E(a, \frac{1}{n}) = \left\{ x \in E / \|x - a\|_E < \frac{1}{n} \right\}$$
 and $B_n = E - \bar{B}(0, n) = E - \left\{ x \in E / \|x\|_E \le n \right\}$.

 A_n and B_n are non-empty open subsets of E, and, using (1), we obtain that

$$T(A_n) \cap V(B_n) = T(B_E(a,\frac{1}{n})) \cap V(E - \overline{B}_E(0,n)) \neq \phi.$$

It results that it exists $y_n \in T(A_n) \cap V(B_n)$. Consequently $y_n = T(u_n) = V(v_n)$, where $u_n \in B_E(a, \frac{1}{n})$ and $v_n \in E - \overline{B}(0, n)$.

So we have obtained two sequences $(u_n)_n$, $(v_n)_n \subset E$ with the properties $u_n \to a$ and $||v_n||_e \to \infty$.

From $\lim_{\|x\|_{E}\to\infty} \|V(x)\|_{F} = \infty$, we obtain that $\|y_{n}\|_{F} = \|V(v_{n})\|_{F} \to \infty$.

If *T* is continuous at the point *a*, then we have $y_n = T(u_n) \to T(a)$, i.e. $\|y_n\|_F \to \|T(a)\|_F$ and this is contradictory to the fact that $\|y_n\|_F \to \infty$. Thus the proof of the *Theorem 2.1* is complete.

3. REMARKS

232

The property (1) being satisfied, we are interested in studying the boundness of V, in the sense that $\text{Im } V = \{V(x) | x \in E\}$ is bounded, if T has at least one point of continuity.

The answer is that V is not necessarily bounded, in the specified sense, which can be observed from the following example:

If T and V are functions from the real numbers set into itself, T(x) = 0 for all rationals, $T(x) = x^2$ for all irrationals, V(x) = 0 for all rationals and V(x) = x for all irrationals, then the property (1) is satisfied, T is continuous only at the point a = 0 and V is not bounded, in the specified sense.

However, we can obtain the following boundness result for V:

Theorem 3.1 Let $T: E \to F$, $V: E \to F$ satisfying (1). If T is continuous at the point $a \in E$ and $(u_n)_n \subset E$ with $||u_n||_E \to \infty$, then it exists the sequence $(t_n)_n \subset E$ so that $||t_n - u_n||_E \to 0$ and the sequence $(V(t_n))_n$ is bounded.

Proof: Let $(u_n)_n \subset E$ with $||u_n||_E \to \infty$. Let *n* be a natural number, $n \ge 1$. From (1) we obtain

$$T(B_E(a,\frac{1}{n})) \cap V(B_E(u_n,\frac{1}{n})) \neq \phi$$

It results that it exists $y_n \in T(B_E(a, \frac{1}{n})) \cap V(B_E(u_n, \frac{1}{n}))$.

Consequently $y_n = T(x_n) = V(t_n)$, where $x_n \in B_E(a, \frac{1}{n})$ and $t_n \in B_E(u_n, \frac{1}{n})$. So we have

obtained two sequences $(x_n)_n, (t_n)_n \subset E$ with the properties $x_n \to a$ and $||t_n - u_n||_E \to 0$. From the continuity of *T* at the point *a*, we obtain that $y_n = T(x_n) \to T(a)$, and consequently, the sequence $(V(t_n))_n$ is bounded. Thus our assertion is proved.

REFERENCES

[1] Teodorescu, D., Australian Mathematical Society Gazette, 37(1), 32-33, 2010.

[2] Dieudonne, J., *Elements d'analyse, Fondaments de l'analyse moderne*, tome 1, Gauthiers-Villars, Paris, 1972.

[3] Rudin, W., Real and complex analysis, McGraw-Hill Inc., New York, 1987.

Manuscript received: 30.06.2010 Accepted paper: 19.08.2010 Published online: 04.10.2010