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Abstract. In this note we had presented two generalizations for Bergstrom and 

Radon’s inequalities for seminorms in pseudo-Hilbert spaces and in normed spaces. Some 
applications are given, as well. 
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INTRODUCTION 
 

First we need to recall, see [3, 5], that a locally convex space Z  is called admissible in 
the Loynes sense if the following conditions are satisfied:  

 Z is complete; 

 there is a closed convex cone in Z , denoted Z  , that defines  an order relation 

on Z (that is 21 zz    if   Z21 zz ); 

 there is an involution in Z, Z  z  z*  Z (that is z** = z , ( z)* = 
z , (z1 + 

z2)* =  2
*
1 zz , such that z  Z+ implies z* = z; 

 the topology of Z is compatible with the order (that is, there exists a basis of 
convex solid neighbourhoods of the origin); 

 and any monotonously decreasing sequence in Z+ is convergent. 
We shall say that a set C  Z is called solid if 0 ≤ z ≤ z'' and z''  C implies z'  C. 
As an easy example we shall consider, Z = C, a C* - algebra with topology and natural 

involution. 
Let Z be an admissible space in the Loynes sense. A linear topological space H is 

called pre-Loynes Z – space if it satisfies the following properties: 
 H  is endowed with a Z - valued inner product (gramian), i.e. there exists an 

application  
H  H  (h, k)  [h, k]  Z having the properties: [h, h] 0; [h, h]=0  implies h=0; 
[h1+h2, h]=[h1, h]+[h2 ,h];   [ h, k]=  [h, k];   [h, k] * = [k, h];  

 

for all h, k, h1 ,h2 H   and  C. 
 The topology of   H is the weakest locally convex topology on   H   for which the 

application H  h  [h, h]  Z is continuous. Moreover, if   H   is a complete space 
with this topology, then H   is called Loynes Z-- space. 
 
Now, considering Z=C as above, Z   with [z1, z2] = z2* z1 is a Loynes Z -space.
An important result which can be used below is given in the next statement, and was 

proved in [5]. 
Let H and K be two Loynes Z-spaces. 
We recall that in [3-5] an operator T L(H, K)  is  called  gramian  bounded, if there 

exists  a  constant  >0  such that  in  the  sense  of  order  of  Z  holds 

[Th, Th] K ≤ [h, h] H , h H.                                                                                                 (1) 
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We denote the class of such operators by B(H, K), and   
 B * (H, K)= B(H, K) L * (H, K). 

We also denote the introduced norm by 

||T|| = inf{  ,  >0  and satisfies  (1)}.                                                                               (2) 

It  is  known  that  the  space  B * (H, K)  is  a  Banach  space,  and  its  involution 
B * (H, K)  in  B * (K, H)  satisfies  
||T * T||=||T|| 2 , T B * (H, K). 

In particular B * (H)  is  a  C * --algebra. 
The following two results were presented in [3]. 

 
Lemma 1.  If p is a continuous and monotonous seminorm on Z, then:  

2

1

])),([()( hhphqp    is a continuous seminorm on H. 

 
Proposition 1.  If H is a pre-Loynes Z-space and P is a set of monotonous (increasing)  
seminorms  defining  the  topology of  Z,  then  the  topology  of  H  is  defined  by  the  

sufficient  and directed  set  of  seminorms   pqQ p |{P  P}. 

We suppose that  ),()()(
212

xMqxqxmq ppp      x  H, with 2,1 pp   continuous and 

increasing seminorms on Z and M finite, M  m >0. Because 2p  is increasing, we have:  
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Thus, for example, 
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Let Z be an admissible space in the Loynes sense and H is a pre-Loynes Z-space.  

Using the Radon's inequality we can state: 
 

 Remark 1.  If  kh  H,  ak>0  with  qp(hk)>0  ,  r>0,  k{1,2,...,n}  then  we  shall have: 
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When we take r = 1 a variant of Bergstrom's inequality with seminorm is obtained. 

 
2.  THE MAIN RESULTS 
 

The proofs of the Theorems 1 and 4 will use the same techniques as in [6]. 
 
Theorem 1. For ak, hk  H with qp(hk) > 0,  r  1, k{1, 2, ...,n}, n  2, nN the following 
inequality takes place: 
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Proof:  We shall consider the sequence, 
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and  we  shall  prove  that  (dn)n  is  an  increasing  monotonous   sequence.     
This fact it indeed true if consider 
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because qp is  seminorm  which  implies,   
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We  used  before  the  Radon's  inequality  applied  for  n=2,  see [1,  6], 
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 and we took ),( 1 np hhq    ),( 1 np hq  a = a1 +…+ an  and b = an+1  

Another proof for inequality (3), can be found in [1]. 
   The sequence (dn)n  being increasing, we obtain that, 

0121   dddd nn   
and that also means that 
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The symmetry  of  dn  relatively  to  the  variables  ai  and  hj,  i, j{1, 2,..., n} allows  

us to notice that:  
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For r=1 is obtained below a refinement of Bergstrom's inequality. 

 
Corollary 1.  For ak > 0, hk

  H, k{1, 2, ..., n}, n  2, nN we shall obtain the following 
inequality: 
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Theorem 2. For ak > 0, xk

X, r  0, k{1, 2, ..., n}, n  2, nN  and every arbitrary 
seminorm p, p:XR+ we have: 
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Corollary 2. In fact with the above conditions, the Corollary 1 remains true for every 
seminorm p from a family of seminorms which defines the topology of the linear space 
considered instead of qp. 
 
Theorem 3. If we consider a normed space H, xk

  H, k{1, 2,..., n} and with the above 
conditions of the Theorem 1, then we have the following inequality: 
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Proof:  
It will be as the proof of the Theorem 1, we shall only take  
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and ||,|| 1 nxx    ||,|| 1 nx  a=a1+…+an  and b=an+1 in relation (3). 
 
Remark 2. We can consider instead of seminorm p, a norm ||.||, in a normed space H, xi

  H 
and then under conditions of the above corollary we shall have, 
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In what follows we shall present a generalizations of the Remark 1 concerning the 
Radon's inequality for seminorms qp. 
 
Remark 3. If hk

  H, ak > 0, r > 0, s  1, k{1, 2, ..., n}, m  1, then the following 
inequalities take place: 
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Now we shall be able to give a generalization of Theorem 1, Radon's inequality for 
seminorms qp. 
 
Theorem 4. For ak, hk

  H with qp(hk)> 0, r   0, s  1, k{1, 2, …, n}, n  2, nN the 
following inequality takes place: 
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Proof: We shall write: 
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  This inequality becomes, 
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Now, using the inequality from Remark 3, we shall obtain: 
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Remark 4.  
 In fact under the above conditions, the above theorem remains true for every 

seminorm p from a family of seminorms which defines the topology of the linear 
space considered instead of qp: 
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,)( Xxk   with p (xk) > 0. 
 Moreover, in every normed space X, we have under above conditions, 
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.)( Xxk   
 Finally, for ak, hk

  H with qp(hk)> 0, r   0, s r+ 1, k{1, 2, ..., n}, n  2, nN a 
variant of Radon's inequality takes place: 
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