A GENERALIZATION OF BERGSTROM AND RADON'S INEQUALITIES IN PSEUDO-HILBERT SPACES

LOREDANA CIURDARIU
Politehnica University of Timisoara, Mathematics Department, 300006, Timisoara, Romania

Abstract

In this note we had presented two generalizations for Bergstrom and Radon's inequalities for seminorms in pseudo-Hilbert spaces and in normed spaces. Some applications are given, as well.

Keywords: pseudo-Hilbert spaces (Loynes spaces), seminorms, Bergstrom inequality, Radon inequality.

INTRODUCTION

First we need to recall, see [3, 5], that a locally convex space \mathbf{Z} is called admissible in the Loynes sense if the following conditions are satisfied:

- \mathbf{Z} is complete;
- there is a closed convex cone in \mathbf{Z}, denoted \mathbf{Z}_{+}, that defines an order relation on \mathbf{Z} (that is $Z_{1} \leq z_{2}$ if $z_{1}-z_{2} \in \mathbf{Z}_{+}$);
- there is an involution in $\mathbf{Z}, \mathbf{Z} \ni z \rightarrow z^{*} \in \mathbf{Z}$ (that is $z^{* *}=z,(\alpha z)^{*}=\bar{\alpha} z^{*},\left(z_{1}+\right.$ $\left.\left.z_{2}\right)^{*}=z_{1}^{*}+z_{2}^{*}\right)$, such that $z \in \mathbf{Z}_{+}$implies $z^{*}=z$;
- the topology of \mathbf{Z} is compatible with the order (that is, there exists a basis of convex solid neighbourhoods of the origin);
- and any monotonously decreasing sequence in \mathbf{Z}_{+}is convergent.

We shall say that a set $C \in \mathbf{Z}$ is called solid if $0 \leq z^{\prime} \leq z^{\prime \prime}$ and $z^{\prime \prime} \in C$ implies $z^{\prime} \in C$.
As an easy example we shall consider, $\mathbf{Z}=C$, a C^{*} - algebra with topology and natural involution.

Let \mathbf{Z} be an admissible space in the Loynes sense. A linear topological space \mathscr{H} is called pre-Loynes \mathbf{Z} - space if it satisfies the following properties:

- \mathcal{H} is endowed with a \mathbf{Z} - valued inner product (gramian), i.e. there exists an application
$\mathscr{H} \times \mathscr{H} \ni(h, k) \rightarrow[\mathrm{h}, \mathrm{k}] \in \mathbf{Z}$ having the properties: $[\mathrm{h}, \mathrm{h}] \geq 0 ;[\mathrm{h}, \mathrm{h}]=0$ implies $\mathrm{h}=0$;
$\left[\mathrm{h}_{1}+\mathrm{h}_{2}, \mathrm{~h}\right]=\left[\mathrm{h}_{1}, \mathrm{~h}\right]+\left[\mathrm{h}_{2}, \mathrm{~h}\right] ; \quad[\lambda \mathrm{h}, \mathrm{k}]=\lambda[\mathrm{h}, \mathrm{k}] ; \quad[\mathrm{h}, \mathrm{k}]^{*}=[\mathrm{k}, \mathrm{h}] ;$ for all $\mathrm{h}, \mathrm{k}, \mathrm{h}_{1}, \mathrm{~h}_{2} \in \mathrm{H}$ and $\lambda \in \mathbf{C}$.
- The topology of \mathscr{H} is the weakest locally convex topology on \mathscr{H} for which the application $\mathscr{H} \ni \mathrm{h} \rightarrow[\mathrm{h}, \mathrm{h}] \in \mathbf{Z}$ is continuous. Moreover, if \mathscr{H} is a complete space with this topology, then \mathscr{H} is called Loynes \mathbf{Z}-- space.

Now, considering $\mathbf{Z}=C$ as above, \mathbf{Z} with $\left[z_{1}, z_{2}\right]=z_{2}{ }^{*} z_{1}$ is a Loynes \mathbf{Z}-space.
An important result which can be used below is given in the next statement, and was proved in [5].

Let \mathscr{H} and \mathscr{K} be two Loynes \mathbf{Z}-spaces.
We recall that in [3-5] an operator $\mathrm{T} \in \mathcal{L}(\mathscr{H}, \mathscr{K})$ is called gramian bounded, if there exists a constant $\mu>0$ such that in the sense of order of \mathbf{Z} holds
$[\mathrm{Th}, \mathrm{Th}]_{\kappa} \leq \mu[\mathrm{h}, \mathrm{h}]_{\mathrm{H}}, \mathrm{h} \in \mathscr{H}$.

We denote the class of such operators by $\mathfrak{B}(\mathscr{H}, \mathscr{K})$, and $\mathscr{B}^{*}(\mathscr{H}, \mathscr{K})=\mathscr{B}(\mathscr{H}, \mathscr{K}) \cap \mathfrak{L}^{*}(\mathscr{H}, \mathscr{K})$.

We also denote the introduced norm by $\|\mathrm{T}\|=\inf \{\sqrt{\mu}, \mu>0$ and satisfies $(1)\}$.

It is known that the space $\mathscr{B}^{*}(\mathscr{H}, \mathscr{K})$ is a Banach space, and its involution $\mathscr{B}^{*}(\mathscr{H}, \mathscr{K})$ in $\mathscr{B}^{*}(\mathcal{K}, \mathscr{H})$ satisfies $\left\|\mathrm{T}^{*} \mathrm{~T}\right\|=\|\mathrm{T}\|^{2}, \mathrm{~T} \in \mathscr{B}^{*}(\mathscr{H}, \mathscr{K})$.

In particular $\mathscr{B}^{*}(\mathscr{H})$ is a C^{*}--algebra.
The following two results were presented in [3].
Lemma 1. If p is a continuous and monotonous seminorm on \mathbf{Z}, then:
$q_{p}(h)=(p([h, h]))^{\frac{1}{2}}$ is a continuous seminorm on \mathcal{H}.
Proposition 1. If \mathscr{H} is a pre-Loynes \mathbf{Z}-space and \mathcal{P} is a set of monotonous (increasing) seminorms defining the topology of \mathbf{Z}, then the topology of \mathscr{H} is defined by the sufficient and directed set of seminorms $Q_{\mathbf{P}}=\left\{q_{p} \mid p \in \mathcal{P}\right\}$.

We suppose that $m q_{p_{2}}(x) \leq q_{p_{1}}(x) \leq M q_{p_{2}}(x),(\forall)_{\mathrm{x}} \in \mathscr{H}$, with $p_{1,} p_{2}$ continuous and increasing seminorms on \mathbf{Z} and M finite, $\mathrm{M} \geq \mathrm{m}>0$. Because p_{2} is increasing, we have:

$$
\frac{M^{2}}{m^{2}}\left\{2+\frac{p_{1}([x, y]+[y, x])}{q_{p_{1}}(x) q_{p_{1}}(y)}\right\} \geq q_{p_{2}}^{2}\left(\frac{x}{q_{p_{2}}(x)}+\frac{y}{q_{p_{2}}(y)}\right) \geq 2 \frac{p_{2}([x, y]+[y, x])}{q_{p_{2}}(x) q_{p_{2}}(y)}
$$

Thus, for example,

$$
\frac{p_{2}([x, y]+[y, x])}{q_{p_{2}}(x) q_{p_{2}}(y)} \leq \frac{M^{2}}{m^{2}}\left\{1+\frac{1}{2} \frac{p_{1}([x, y]+[y, x])}{q_{p_{1}}(x) q_{p_{1}}(y)}\right\} .
$$

Let \mathbf{Z} be an admissible space in the Loynes sense and \mathscr{H} is a pre-Loynes \mathbf{Z}-space. Using the Radon's inequality we can state:

Remark 1. If $h_{k} \in \mathscr{H}, \mathrm{a}_{\mathrm{k}}>0$ with $\mathrm{q}_{\mathrm{p}}\left(\mathrm{h}_{\mathrm{k}}\right)>0, \mathrm{r}>0, \mathrm{k} \in\{1,2, \ldots, \mathrm{n}\}$ then we shall have:

$$
\sum_{k=1}^{n} \frac{q_{p}\left(h_{k}\right)^{r+1}}{a_{k}^{r}} \geq \frac{\left(\sum_{k=1}^{n} q_{p}\left(h_{k}\right)\right)^{r+1}}{\left(\sum_{k=1}^{n} a_{k}\right)^{r}}
$$

When we take $\mathrm{r}=1$ a variant of Bergstrom's inequality with seminorm is obtained.

2. THE MAIN RESULTS

The proofs of the Theorems 1 and 4 will use the same techniques as in [6].
Theorem 1. For $\mathrm{a}_{\mathrm{k}}, \mathrm{h}_{\mathrm{k}} \in \mathscr{H}$ with $\mathrm{q}_{\mathrm{p}}\left(\mathrm{h}_{\mathrm{k}}\right)>0, \mathrm{r} \geq 1, \mathrm{k} \in\{1,2, \ldots, \mathrm{n}\}, \mathrm{n} \geq 2, \mathrm{n} \in \mathbf{N}$ the following inequality takes place:

$$
\sum_{k=1}^{n} \frac{q_{p}\left(h_{k}\right)^{r+1}}{a_{k}^{r}} \geq \frac{\left(\sum_{k=1}^{n} q_{p}\left(h_{k}\right)\right)^{r+1}}{\left(\sum_{k=1}^{n} a_{k}\right)^{r}}+\max _{1 \leq \mathrm{i} \mathrm{i} \leq \mathrm{n}}\left(\frac{q_{p}\left(h_{i}\right)^{r+1}}{a_{i}^{r}}+\frac{q_{p}\left(h_{j}\right)^{r+1}}{a_{j}^{r}}-\frac{q_{p}\left(h_{i}+h_{j}\right)^{r+1}}{\left(a_{i}+a_{j}\right)^{r}}\right)
$$

Proof: We shall consider the sequence,

$$
d_{n}=\frac{q_{p}\left(h_{1}\right)^{r+1}}{a_{1}^{r}}+\ldots+\frac{q_{p}\left(h_{n}\right)^{r+1}}{a_{n}^{r}}-\frac{q_{p}\left(h_{1}+\ldots+h_{n}\right)^{r+1}}{\left(a_{1}+\ldots+a_{n}\right)^{r}}
$$

and we shall prove that $\left(d_{n}\right)_{n}$ is an increasing monotonous sequence.
This fact it indeed true if consider

$$
d_{n+1}-d_{n}=\frac{q_{p}\left(h_{n+1}\right)^{r+1}}{a_{n+1}^{r}}-\frac{q_{p}\left(h_{1}+\ldots+h_{n}+h_{n+1}\right)^{r+1}}{\left(a_{1}+\ldots+a_{n}+a_{n+1}\right)^{r}}+\frac{q_{p}\left(h_{1}+\ldots+h_{n}\right)^{r+1}}{\left(a_{1}+\ldots+a_{n}\right)^{r}}
$$

because q_{p} is seminorm which implies,

$$
q_{p}\left(h_{1}+\ldots+h_{n}+h_{n+1}\right) \leq q_{p}\left(h_{1}+\ldots+h_{n}\right)+q_{p}\left(h_{n+1}\right)
$$

and also:

$$
\frac{\left(q_{p}\left(h_{1}+\ldots+h_{n}+h_{n+1}\right)\right)^{r+1}}{\left(\left(a_{1}+\ldots+a_{n}\right)+a_{n+1}\right)^{r}} \leq \frac{\left(q_{p}\left(h_{1}+\ldots+h_{n}\right)+q_{p}\left(h_{n+1}\right)\right)^{r+1}}{\left(\left(a_{1}+\ldots+a_{n}\right)+a_{n+1}\right)^{r}} \leq \frac{q_{p}\left(h_{1}+\ldots+h_{n}\right)^{r+1}}{\left(a_{1}+\ldots+a_{n}\right)^{r}}+\frac{q_{p}\left(h_{n+1}\right)^{r+1}}{a_{n+1}^{r}} .
$$

We used before the Radon's inequality applied for $\mathrm{n}=2$, see $[1,6]$,
$\frac{\alpha^{r+1}}{a^{r}}+\frac{\beta^{r+1}}{b^{r}} \geq \frac{(\alpha+\beta)^{r+1}}{(a+b)^{r}}$,
and we took $\alpha=q_{p}\left(h_{1}+\ldots+h_{n}\right), \beta=q_{p}\left(h_{n+1}\right), \mathrm{a}=\mathrm{a}_{1}+\ldots+\mathrm{a}_{\mathrm{n}}$ and $\mathrm{b}=\mathrm{a}_{\mathrm{n}+1}$
Another proof for inequality (3), can be found in [1].
The sequence $\left(d_{n}\right)_{n}$ being increasing, we obtain that,

$$
d_{n} \geq d_{n-1} \geq \ldots \geq d_{2} \geq d_{1}=0
$$

and that also means that

$$
d_{n} \geq d_{2}=\frac{q_{p}\left(h_{1}\right)^{r+1}}{a_{1}^{r}}+\frac{q_{p}\left(h_{2}\right)^{r+1}}{a_{2}^{r}}-\frac{q_{p}\left(h_{1}+h_{2}\right)^{r+1}}{\left(a_{1}+a_{2}\right)^{r}}, \quad(\forall) n \in \mathrm{~N}, \quad n \geq 2 .
$$

The symmetry of d_{n} relatively to the variables a_{i} and $h_{j}, i, j \in\{1,2, \ldots, n\}$ allows us to notice that:

$$
d_{n} \geq \frac{q_{p}\left(h_{i}\right)^{r+1}}{a_{i}^{r}}+\frac{q_{p}\left(h_{j}\right)^{r+1}}{a_{j}^{r}}-\frac{q_{p}\left(h_{i}+h_{j}\right)^{r+1}}{\left(a_{i}+a_{j}\right)^{r}}, \quad(\forall) n \in \mathrm{~N}, \quad n \geq 2, i, j \in\{1,2, \ldots, n\} .
$$

For $\mathrm{r}=1$ is obtained below a refinement of Bergstrom's inequality.
Corollary 1. For $\mathrm{a}_{\mathrm{k}}>0, \mathrm{~h}_{\mathrm{k}} \in \mathscr{H}, \mathrm{k} \in\{1,2, \ldots, \mathrm{n}\}, \mathrm{n} \geq 2, \mathrm{n} \in \mathrm{N}$ we shall obtain the following inequality:

$$
\sum_{k=1}^{n} \frac{q_{p}\left(h_{k}\right)^{2}}{a_{k}} \geq \frac{\left(\sum_{k=1}^{n} q_{p}\left(h_{k}\right)\right)^{2}}{\left(\sum_{k=1}^{n} a_{k}\right)}+\max _{1 \leq i<i \leq n} \frac{\left(a_{i}+a_{j}\right)\left(a_{j} q_{p}^{2}\left(h_{i}\right)+a_{i} q_{p}^{2}\left(h_{j}\right)\right)-a_{i} a_{j} q_{p}^{2}\left(h_{i}+h_{j}\right)}{a_{i} a_{j}\left(a_{i}+a_{j}\right)}
$$

Theorem 2. For $\mathrm{a}_{\mathrm{k}}>0, \mathrm{x}_{\mathrm{k}} \in \boldsymbol{X}, \mathrm{r} \geq 0, \mathrm{k} \in\{1,2, \ldots, \mathrm{n}\}, \mathrm{n} \geq 2, \mathrm{n} \in \mathrm{N}$ and every arbitrary seminorm $\mathrm{p}, \mathrm{p}: \boldsymbol{X}^{\rightarrow} \mathrm{R}_{+}$we have:

$$
\sum_{k=1}^{n} \frac{p\left(x_{k}\right)^{r+1}}{a_{k}^{r}} \geq \frac{\left(\sum_{k=1}^{n} p\left(x_{k}\right)\right)^{r+1}}{\left(\sum_{k=1}^{n} a_{k}\right)^{r}}+\max _{1 \leq i<i \leq n}\left(\frac{p\left(x_{i}\right)^{r+1}}{a_{i}^{r}}+\frac{p\left(x_{j}\right)^{r+1}}{a_{j}^{r}}-\frac{p\left(x_{i}+x_{j}\right)^{r+1}}{\left(a_{i}+a_{j}\right)^{r}}\right) .
$$

Corollary 2. In fact with the above conditions, the Corollary 1 remains true for every seminorm p from a family of seminorms which defines the topology of the linear space considered instead of q_{p}.

Theorem 3. If we consider a normed space $\mathscr{H}, \mathrm{x}_{\mathrm{k}} \in \mathscr{H}, \mathrm{k} \in\{1,2, \ldots, \mathrm{n}\}$ and with the above conditions of the Theorem 1, then we have the following inequality:

$$
\sum_{k=1}^{n} \frac{\left\|x_{k}\right\|^{r+1}}{a_{k}^{r}} \geq \frac{\left(\sum_{k=1}^{n}\left\|x_{k}\right\|\right)^{r+1}}{\left(\sum_{k=1}^{n} a_{k}\right)^{r}}+\max _{1 \leq i<j \leq n}\left(\frac{\left\|x_{i}\right\|^{r+1}}{a_{i}^{r}}+\frac{\left\|x_{j}\right\|^{r+1}}{a_{j}^{r}}-\frac{\left\|x_{i}+x_{j}\right\|^{r+1}}{\left(a_{i}+a_{j}\right)^{r}}\right) .
$$

Proof:

It will be as the proof of the Theorem 1, we shall only take

$$
d_{n}=\frac{\left\|x_{1}\right\|^{r+1}}{a_{1}^{r}}+\ldots+\frac{\left\|x_{n}\right\|^{r+1}}{a_{n}^{r}}-\frac{\left\|x_{1}+\ldots+x_{n}\right\|^{r+1}}{\left(a_{1}+\ldots+a_{n}\right)^{r}}
$$

and $\alpha=\left\|x_{1}+\ldots+x_{n}\right\|, \quad \beta=\left\|x_{n+1}\right\|, \mathrm{a}=\mathrm{a}_{1}+\ldots+\mathrm{a}_{\mathrm{n}}$ and $\mathrm{b}=\mathrm{a}_{\mathrm{n}+1}$ in relation (3).
Remark 2. We can consider instead of seminorm p , a norm $\|$.$\| , in a normed space \mathscr{H}, \mathrm{x}_{\mathrm{i}} \in \mathscr{H}$ and then under conditions of the above corollary we shall have,

$$
\sum_{k=1}^{n} \frac{\left\|x_{k}\right\|^{2}}{a_{k}} \geq \frac{\left(\sum_{k=1}^{n}\left\|x_{k}\right\|\right)^{2}}{\sum_{k=1}^{n} a_{k}}+\max _{1 \leq i<i \leq n} \frac{\left.\left(a_{i}+a_{j}\right)\left(a_{j}\left\|x_{i}\right\|^{2}+a_{i}\left\|x_{j}\right\|^{2}\right)-a_{i} a_{j}\left\|x_{i}+x_{j}\right\|^{2}\right)}{a_{i} a_{j}\left(a_{i}+a_{j}\right)}
$$

In what follows we shall present a generalizations of the Remark 1 concerning the Radon's inequality for seminorms q_{p}.

Remark 3. If $\mathrm{h}_{\mathrm{k}} \in \mathscr{H}, \mathrm{a}_{\mathrm{k}}>0, \mathrm{r}>0, \mathrm{~s} \geq 1, \mathrm{k} \in\{1,2, \ldots, \mathrm{n}\}, \mathrm{m} \geq 1$, then the following inequalities take place:

$$
\sum_{k=1}^{n} \frac{q_{p}\left(h_{k}\right)^{r+s}}{a_{k}^{r}} \geq \frac{1}{n^{s-1}} \frac{\left(\sum_{k=1}^{n} q_{p}\left(h_{k}\right)\right)^{r+s}}{\left(\sum_{k=1}^{n} a_{k}\right)^{r}}, \quad \sum_{k=1}^{n} q_{p}\left(h_{k}\right)^{m} \geq \frac{1}{n^{m-1}}\left(\sum_{k=1}^{n} q_{p}\left(h_{k}\right)\right)^{m}
$$

Now we shall be able to give a generalization of Theorem 1, Radon's inequality for seminorms q_{p}.

Theorem 4. For $\mathrm{a}_{\mathrm{k}}, \mathrm{h}_{\mathrm{k}} \in \mathscr{H}$ with $\mathrm{q}_{\mathrm{p}}\left(\mathrm{h}_{\mathrm{k}}\right)>0, \mathrm{r} \geq 0, \mathrm{~s} \geq 1, \mathrm{k} \in\{1,2, \ldots, \mathrm{n}\}, \mathrm{n} \geq 2, \mathrm{n} \in \mathrm{N}$ the following inequality takes place:

$$
\begin{equation*}
\sum_{k=1}^{n} \frac{q_{p}\left(h_{k}\right)^{r+s}}{a_{k}^{r}} \geq \frac{1}{n^{s-1}} \frac{\left(\sum_{k=1}^{n} q_{p}\left(h_{k}\right)\right)^{r+s}}{\left(\sum_{k=1}^{n} a_{k}\right)^{r}}+\max _{1 \leq i<j \leq n}\left(\frac{q_{p}\left(h_{i}\right)^{r+s}}{a_{i}^{r}}+\frac{q_{p}\left(h_{j}\right)^{r+s}}{a_{j}^{r}}-\frac{q_{p}\left(h_{i}+h_{j}\right)^{r+s}}{\left(a_{i}+a_{j}\right)^{r}}\right) . \tag{4}
\end{equation*}
$$

Proof: We shall write:

$$
\sum_{k=1}^{n} \frac{q_{p}\left(h_{k}\right)^{r+s}}{a_{k}^{r}} \geq \sum_{k=1}^{n} \frac{\left(q_{p}\left(h_{k}\right)^{\frac{r+s}{r+1}}\right)^{r+1}}{a_{k}^{r}} .
$$

and then applying the inequality from Theorem 1, we shall obtain,

$$
\sum_{k=1}^{n} \frac{\left(q_{p}\left(h_{k}\right)^{\frac{r+s}{r+1}}\right)^{r+1}}{a_{k}^{r}} \geq \frac{\left(\sum_{k=1}^{n} q_{p}\left(h_{k}\right)^{\frac{r+s}{r+1}}\right)^{r+1}}{\left(\sum_{k=1}^{n} a_{k}\right)^{r}}+\max _{1 \leq i<j \leq n}\left(\frac{\left(q_{p}\left(h_{i}\right)^{\frac{r+s}{r+1}}\right)^{r+1}}{a_{i}^{r}}+\frac{\left(q_{p}\left(h_{j}\right)^{\frac{r+s}{r+1}}\right)^{r+1}}{a_{j}^{r}}-\frac{\left(q_{p}\left(h_{i}+h_{j}\right)^{\frac{r+s}{r+1}}\right)^{r+1}}{\left(a_{i}+a_{j}\right)^{r}}\right) .
$$

This inequality becomes,

$$
\sum_{k=1}^{n} \frac{\left(q_{p}\left(h_{k}\right)^{\frac{r+s}{r+1}}\right)^{r+1}}{a_{k}^{r}} \geq \frac{\left(\sum_{k=1}^{n} q_{p}\left(h_{k}\right)^{\frac{r+s}{r+1}}\right)^{r+1}}{\left(\sum_{k=1}^{n} a_{k}\right)^{r}}+\max _{1 \leq i \ll \leq n}\left(\frac{q_{p}\left(h_{i}\right)^{r+s}}{a_{i}^{r}}+\frac{q_{p}\left(h_{j}\right)^{r+s}}{a_{j}^{r}}-\frac{q_{p}\left(h_{i}+h_{j}\right)^{r+s}}{\left(a_{i}+a_{j}\right)^{r}}\right) .
$$

Now, using the inequality from Remark 3, we shall obtain:

$$
\sum_{k=1}^{n} \frac{q_{p}\left(h_{k}\right)^{r+s}}{a_{k}^{r}} \geq \frac{\frac{1}{n^{s-1}}\left(\sum_{k=1}^{n} q_{p}\left(h_{k}\right)\right)^{r+s}}{\left(\sum_{k=1}^{n} a_{k}\right)^{r}}+\max _{1 \leq \mathrm{i} \mathrm{j} \leq \mathrm{n}}\left(\frac{q_{p}\left(h_{i}\right)^{r+s}}{a_{i}^{r}}+\frac{q_{p}\left(h_{j}\right)^{r+s}}{a_{j}^{r}}-\frac{q_{p}\left(h_{i}+h_{j}\right)^{r+s}}{\left(a_{i}+a_{j}\right)^{r}}\right)
$$

Remark 4.

- In fact under the above conditions, the above theorem remains true for every seminorm p from a family of seminorms which defines the topology of the linear space considered instead of q_{p} :

$$
\begin{equation*}
\sum_{k=1}^{n} \frac{p\left(x_{k}\right)^{r+s}}{a_{k}^{r}} \geq \frac{1}{n^{s-1}} \frac{\left(\sum_{k=1}^{n} p\left(x_{k}\right)\right)^{r+s}}{\left(\sum_{k=1}^{n} a_{k}\right)^{r}}+\max _{1 \leq i<i \leq \mathrm{n}}\left(\frac{p\left(x_{i}\right)^{r+s}}{a_{i}^{r}}+\frac{p\left(x_{j}\right)^{r+s}}{a_{j}^{r}}-\frac{p\left(x_{i}+x_{j}\right)^{r+s}}{\left(a_{i}+a_{j}\right)^{r}}\right), \tag{5}
\end{equation*}
$$

$(\forall) x_{k} \in X$, with $\mathrm{p}\left(\mathrm{x}_{\mathrm{k}}\right)>0$.

- Moreover, in every normed space X, we have under above conditions,

$$
\begin{equation*}
\sum_{k=1}^{n} \frac{\left\|x_{k}\right\|^{r+s}}{a_{k}^{r}} \geq \frac{1}{n^{s-1}} \frac{\left(\sum_{k=1}^{n}\left\|x_{k}\right\|\right)^{r+s}}{\left(\sum_{k=1}^{n} a_{k}\right)^{r}}+\max _{1 \mathrm{i} \mathrm{i} \mathrm{j} \leq \mathrm{n}}\left(\frac{\left\|x_{i}\right\|^{r+s}}{a_{i}^{r}}+\frac{\left\|x_{j}\right\|^{r+s}}{a_{j}^{r}}-\frac{\left\|x_{i}+x_{j}\right\|^{r+s}}{\left(a_{i}+a_{j}\right)^{r}}\right), \tag{6}
\end{equation*}
$$

$(\forall) x_{k} \in X$.

- Finally, for $\mathrm{a}_{\mathrm{k}}, \mathrm{h}_{\mathrm{k}} \in \mathscr{H}$ with $\mathrm{q}_{\mathrm{p}}\left(\mathrm{h}_{\mathrm{k}}\right)>0, \mathrm{r} \geq 0, \mathrm{~s} \geq \mathrm{r}+1, \mathrm{k} \in\{1,2, \ldots, \mathrm{n}\}, \mathrm{n} \geq 2, \mathrm{n} \in \mathrm{N}$ a variant of Radon's inequality takes place:

$$
\begin{equation*}
\sum_{k=1}^{n} \frac{q_{p}\left(h_{k}\right)^{s}}{a_{k}^{r}} \geq \frac{1}{n^{s-r-1}} \frac{\left(\sum_{k=1}^{n} q_{p}\left(h_{k}\right)\right)^{s}}{\left(\sum_{k=1}^{n} a_{k}\right)^{r}}+\max _{1 \leq i<j \leq n}\left(\frac{q_{p}\left(h_{i}\right)^{s}}{a_{i}^{r}}+\frac{q_{p}\left(h_{j}\right)^{s}}{a_{j}^{r}}-\frac{q_{p}\left(h_{i}+h_{j}\right)^{s}}{\left(a_{i}+a_{j}\right)^{r}}\right) . \tag{7}
\end{equation*}
$$

REFERENCES

[1] Bencze, M., Octogon Mathematical Magazine, 15(1), 58-62, 2007.
[2] Chobanyan, S. A., Weron A., Dissertations Math., 125, 1-45, 1975.
[3] Ciurdariu, L., Classes of linear operators on pseudo-Hilbert spaces and applications, Part I, Monografii matematice, Tipografia Universitatii de Vest din Timisoara, 79, 2006.
[4] Loynes, R. M., Trans. American Math. Soc., 116, 167-180, 1965.
[5] Loynes, R. M., Proc. London Math. Soc, 3, 373-384, 1965.
[6] Marghidanu, D., Journal of Science and Arts, 8(1), 57-61, 2008.

