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1. INTRODUCTION 
 

Let  be a real Hilbert space endowed with the inner product H ,     and the norm  . 

Let  be a non-expansive operator (i.e. :N H H ( ) ( )N x N y x y    for all ,x y H ). 

An operator  is called averaged if :T H H (1 )T I N     for some (0,1)  , where I  
is the identity of . We say that T  is the averaged operator associated to the operator . H N

The term "averaged operator" appears firstly in 1977 in the work [1] of Bruck and 
Reich. Few years later, motivated by the Krasnoselskii-Mann Theorem, the averaged 
operators are considered in the study of the operators having multiple fixed points. Some 
authors require that  is arbitrary and sometimes T  is called a relaxation of the operator . N N

The properties of the averaged operators have been investigated by many authors (see 
[2],[3],[4],[5],[6]) and, firstly, we present here the principal results and short proofs of some 
of them (as they appear in the book [4] of C. Byrne). 
Theorem 1.1 Let  be non-expansive, :N H H ( )Fix N   and  be the 
averaged operator associated to . Then 

:T H H
N ( )Fix T   and ( )Fix T (Fix N ) .  

(  denotes the set of the fixed points of the operator( )Fix A A ) 
Theorem 1.2 Let (1 )T A N     for some (0,1)  . If A  is averaged and  is non-
expansive, then  is averaged. 

N
T

Proof:  Let (1 )A I M     for some (0,1)  and M  a non-expansive operator. 
Let 1 (1 )(1 )      . Then we have 

1 1(1 ) [(1 ) ]T I M          N
1N

. 

Since the operator  is easily shown to be non-expansive 
and the convex combination of two non-expansive operators is again non-expansive, T  is 
averaged. 

1(1 )K M    

Theorem 1.3  An operator  is called firmly non-expansive if  :S H H
2

( ) ( ), ( ) ( )S x S y x y S x S y    for all ,x y H . Let (1 )T F N     for some 

(0,1)  . If  is firmly non-expansive  and  is non-expansive, then T  is averaged. F N
Theorem 1.4  If  and A B  are averaged, then T AB  is averaged. 
Theorem 1.5 Let A  and B  be averaged operators and suppose that ( ) ( )Fix A Fix B   . 
Then . ( ) ) ( )Fix A Fix AB Fix BA  ( )B (Fix

Let  be a non-expansive operator. It is known that, if V  is strongly 

monotone(i.e. it exists 

:V H H
0   so that 

2
( ) ( ),V x V y x y x y     for all ,x y H ; from 
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the non-expansivity of V  it is clear that, in fact, (0,1) ), then V  has an inverse, and 
consequently the equation  has an unique solution for all ( )V x f f H .(see [7]) 

In this paper we prove that the averaged operator associated to a non-expansive 
strongly monotone operator has an inverse. 
 
2.  RESULTS 
 
Theorem 2.1   Let  be a non-expansive strongly monotone operator, :N H H

( ) ( )N x N y x y    for all ,x y H ; 
2

( ) ( ),N x N y x y x y     for all ,x y H ( ). (0,1) 
Then the averaged operator T  associated to  has an inverse. N

Proof:  We have (1 )T A N     for some (0,1)  . Consequently 

( ) ( ) (1 ) (T x T y x N y     ) (1 )x   ( )N y  

,x y H(1 ) ( ) ( )x y N x N y      x y   for all . 

Also we obtain 
( ) ( ), (1 ) ( ) (1 ) ( ),N yT x T y x y x N x y x y         

(1 ) , ( ) ( ), (1 )x y x y N x N y x y           x y    for all ,x y H . 

1 0     because (0,1)   and, clearly, 1 1    . Thus  is a non-expansive 
strongly monotone operator. It results now that the operator T  has an inverse and so, the 
proof of the theorem is complete. 

T

 
3. REMARKS 
 
1. The previous result shows that the averaged operator associated to an operator  preserves 
the non-expansivity and the strong monotonicity. 

N

2. It's clear that some properties in this article are true for all 0  . Thus it is interesting to 
study operators of the form (1 )A B    for some 0  , when the operators  and A B  
have some special properties; so we can find a way to study some concrete equations. 
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