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Abstract. This paper contains a particular point of view about the evolution of the 

Lotka-Volterra models when a disturbing external factor is present.  
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1. INTRODUCTION  
 

The mathematical model Volterra for the existence of prey-predator species explains 
the variable levels of the fish chaches in the Adriatic. If N(t) is the prey population, and P(t) is 
the predators, at the moment t, then the Volterra’ s model is: 
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where a, b, c and d are positive constants [1]. The assumptions are: 
    a) In the absence of any predation, the prey grows unboundedly, aspect revealed by the aN 
term. 
    b)  The effect of the predation is to reduce the prey’s growth rate, a component proportional 
to both populations: -bNP term. 
    c)  In the absence of any prey, the predator’s death rate of the predators results in 
exponential decay: -dP term. 
    d) The prey’s contribution to the predators’ growth rate is revealed by the cNP term, which 
means, it is proportional to both populations. 

The NP terms can be understood as representing the conversion of energy from one 
source to another: bN P is taken from the prey and cN P is given to the predators. 

 This model, even if it has drawbacks and was some discussions about in the literature, 
it is used as main motivation in the present study.  
 
 
2. THE COMPETITIVE EXCLUSION MODEL  
 

Among the others, Hsu, having the Volterra example, also proposed an interesting 
model when two species compete for the same limited resources of existence, food, territory, 
etc., one of the species becoming extinct: (the species are named with N1, N2  and have a 
logistic growth in the absence of the other [1]  

Here we have one of the Murray’s simple models:  
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where r1, K1, r2, K2, b12, b21 are positive constants, r1,2 are the linear birth rates and K1,2 are 
the carrying capacities, b12, respective b21 measure the competitive effect of N2 on N1, and of  
N1 on N2, respectively. 

In order to nondimensionalise this model, the author writes:                   
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The dynamical system will have the following form: 
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The steady states, and phase plane singularities,  are solutions of the equations: 
f


21 u,u

1(u1,u2)=f2(u1,u2)=0.  
The four possibilities have been studied and represented by the author, in order to 

determine the stability of the steady states. The conclusions are similar with those presented in 
the "Lotka-Volterra" system example, so that the singularity point (u1, u2)=(0,0) leads to  
instability, and in the others cases the result depending of the sign of the Eigen values λ of its 
community matrix . The singularities are: 
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the last having sense only if: 1aa 2112  . The community matrix is formed with the partial 
derivatives of the two functions f1, f2: 
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The Eigen values, 1,2, calculated in each case as solutions of the characteristic 
equation |A-I2|=0, determine the stability according to the values of  a12, a21 terms [1]. 
  1) Our contribution is a new point of view about the proposed model and the study of 
the new properties. Supposing that we are in the general case, with: . It is noted: 0u,u 21 
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Replacing in the linearised Volterra’s equations we obtain the next relation, with 
M2(R) coefficients: 

21
2 uuT)t(pS)t(pR)t(p   

Ignoring the free term, we obtain a Bernoulli equation in p(t) variable: 

2
2 0)t(pS)t(pR)t(p   

with: p(t), p:R L(R) self adjoint continuous differentiable operator on (t0,t1)[T1, T2]R+. 

Using the notation [2], can be lead to the differential equation: 

, with the solution: 
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, as S=-R. 
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where: e1C -2A-e-3A-I2, which has been calculated from the condition: v(1)=-[p(1)]-1, p(1)=eA.  

Concequently: p(t)=-[v(t)]-1=  1)3t2(A)1t(A2
2
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written: 
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or:   
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The initial equation being transformed in a dynamical one, together with the out 

equation, the response of the system, with no deal over the optimal command , response 
which depends on the optimal trajectory x(t).  Let’s call the systems (S*) and (S**) as 
“dynamical systems associated with the Volterra’s equations, association revealed by a 
duality relation:  

a) According to the algorithm for the solution of an optimal problem with quadratic 
cost function [2],  for having the optimal command of the  Volterra’s associated systems, it 
must be solved a Bernoulli equation, formed with the system coefficients: 

)t(p*BB)t(p*)AA()t(p 2 ,where: p(t)=p*(t) , (t)=1,(t)=0 

It know that : A+A*=R and BB*=S( (t)=0, (t)=1), so that the Bernoulli equation 

can be written:  or: , which is exactly 
the Volterra homogeneous equation. 
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b)  The optimal command , has been found knowing the associate system 
coefficients, that is the Volterra’s system coefficients; according to the algorithm [2]  has 
the following formula:  and the optimal trajectory 
x(t) is the solution of the equation: 

)t(x)t(p*B)t(x)t(p*B)t()x,t( 1  

)t(x)]t(p)t(SA[)t(x   in which p(t) is the solution of the 
Volterra homogeneous equation. 

2) Supposing we are again in the previous conditions and consider the linearised 
Volterra equations, with the variables u1, u2. 

It keeps the linear terms of the system only, because it is interested about the existence 
of an optimal external disturbing factor, which acting on the predator population leads to an 
optimal result on the prey population. Note: =(1,2) the external disturbing factor, the 
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command, and let  y=(y1,y2) represent “the system response”  to the external factor. The 
algorithm for the optimal solution [2] can be used and the optimal command can be 
calculated. The Volterra’s system is reconstructed for this purpose, reformulated in the state 
variables form: 
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Let: =3>0. With the optimal solution algorithm ([2]) it is obtained, for the considered 
value of the parameter, the next results ((t)=1,(t)=0) : 
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                                                                                                       components:  
green=predator,  

brown=prey 
Others representations of the optimal command: 
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3. THE MUTUALISM OR SYMBIOSIS FOR TWO SPECIES MODEL 
 
 

The simplest mutualism model equivalent to the classical Lotka–Volterra predator–
prey system is:    
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where: r1, r2, a1, a2 are positive constants. 
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As  0
d

dN1 
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 and 0
d

dN2 


, it results that N1 and N2 grow unboundedly. This is not a 

realistic model.  
In Nature, there exist  stability periods, as well as limit cycle oscillations, the most of 

the models having being described by Whittaker; a practical example is presented by May , 
model which is the start point in the present considerations [1].  Both species are considered, 
as it is realistic, with limited carrying capacities: 
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where: r1, K1, r2, K2, b12, b21 are positive constants.
Using the same non-dimensionalisation as in the competition model, from the previous 

paragraph, the authors obtained the linearised system: 
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with respect to the same conventions.  
We propose once again to ignore the nonlinear terms and keep the linear ones, also to 

introduce the external command, represented by the vector =(1, 2).  The "impuls" will act 
on the "host" (prey) with effect on the "guest" (predator). The representation in the state form, 
with respect to the same conventions: 
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For the =3 value of the parameter, like the previous numerical example, according to 
the algorithm, we have the following results ((t)=1,(t)=0): 
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Other representations for the optimal command, using the algorithm’s result:   
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1) 

 

The dynamical systems noted (*) and (**), which result from the homogeneous 
Volterra’s equations are similar, with the single difference that the commanded action and the 
expected result are different with regard to the selected population segment. These systems 
can form a special set, whose properties can be evaluated no matter the action of the external 
command or the expected response. The equivalent relation, noted by “”, between the set 
elements can be defined with aid of the command matrix operator which is present in all these 
systems, for the same σ(t) and ρ(t): (S1)  (S2)   [ B1=B2  1=2], >0, BiM2(R) (i=1,2) . 

The equivalent relation is sufficiently defined only by the first equation, the dynamical 
one. For all these systems we shall be in the context of the algorithm for the optimal 
command of the dynamical systems with quadratic cost function. According to this algorithm, 
the difference between the results will be made only by the x(t) solution of the Riccati 
equation, which, in turn, could be the second equivalent relation , this time,  between the 
”associate” Volterra equations.  The fact that the defined “” relation is an equivalent relation, 
can be demonstrated taking account to the properties of the system terms:  
(S1)  (S1)  
(S1)  (S2)   (S2)  (S1) because: (B1=B2  1 =2) (B2=B1  2 =
(S1)  (S2)  (S2)  (S3)  (S1)  (S3) because: (B1=B2  1 =2)  (B2=B3  2 =3) 
(B1=B3  1 =3)
 
 
4. CONCLUSIONS 
 
         It can conclude that two systems, noted (*) and (**), are in the same equivalent class if 
the external command acts on the same population segment and the quadratic operator 
parameter in the homogeneous equation is the same, no matter of the response of the system, 
which can be different. The non-unicity of the matrix C, which corresponds to the same 
optimal control, represents an obstacle ignored by the definition of the equivalent relation on 
the set of the dynamical equations and the definition of some canonical forms. 
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