ON A CONVERGENCE BY DETEMPLE

CHAO-PING CHEN ${ }^{1}$, CRISTINEL MORTICI ${ }^{2}$

${ }^{1}$ Henan Polytechnic University, School of Mathematics and Informatics, 454003, Jiaozuo City, Henan Province, People's Republic of China
${ }^{2}$ Valahia University of Targoviste, Faculty of Science and Arts, 130082, Targoviste, Romania

Abstract

The aim of this paper is to discuss the sequence defined by DeTemple in [6]. Keywords: Euler-Mascheroni constant, Harmonic numbers, Inequality, Digamma function, asymptotic expansion.

Mathematics subject classification: 11Y60, 40A05, 33B15, 2D15.

INTRODUCTION

The Euler-Mascheroni constant $\gamma=0.577215664 \ldots$ is defined as the limit of:

$$
\begin{equation*}
D_{n}=H_{n}-\ln n \tag{1.1}
\end{equation*}
$$

where H_{n} denotes the nth harmonic number, defined for $n \in \mathbb{N}$ by $H_{n}=\sum_{k=1}^{n} \frac{1}{k}$.
Several bounds for $D_{n}-\gamma$ have been given in the literature [2, 3, 5, 7-9]. The convergence of the sequence Dn to γ is very slow. Some quicker approximations to the EulerMascheroni constant were established and we mention here the following sequence introduced by DeTemple [6]: $R_{n}=H_{n}-\ln \left(n+\frac{1}{2}\right)$,
for which

$$
\begin{equation*}
\frac{1}{24(n+1)^{2}}<R n-\gamma<\frac{1}{24 n^{2}} \tag{1.2}
\end{equation*}
$$

First we use the asymptotic series of the digamma function ψ in terms of Bernoulli numbers

$$
\begin{equation*}
\psi(x+1) \sim \ln x+\frac{1}{2 x}-\sum_{k=1}^{\infty} \frac{B_{2 k}}{2 k x^{2 k}}=\ln x+\frac{1}{2 x}-\frac{1}{12 x^{2}}+\frac{1}{120 x^{4}}-\frac{1}{252 x^{6}}+\ldots \tag{1.3}
\end{equation*}
$$

(see, e.g., [1]) to deduce the standard asymptotic series of DeTemple's sequence

$$
\begin{equation*}
\sum_{k=1}^{n} \frac{1}{k}-\ln \left(n+\frac{1}{2}\right) \sim \gamma+\frac{1}{24 n^{2}}-\frac{1}{24 n^{3}}+\frac{23}{960 n^{4}}-\frac{1}{160 n^{5}}-\frac{11}{8064 n^{6}}+\ldots \tag{1.4}
\end{equation*}
$$

Recently, Chen [4] obtained the following sharp form of the inequality (1.2):

$$
\begin{equation*}
\frac{1}{24(n+a)^{2}} \leq R n-\gamma<\frac{1}{24(n+b)^{2}}, \quad n \geq 1 \tag{1.5}
\end{equation*}
$$

with the best possible constants $a=\frac{1}{\sqrt{24\left[-\gamma+1-\ln \frac{3}{2}\right]}}-1=0.55106 \ldots$ and $b=\frac{1}{2}$
We propose the following series in negative powers of $n-1 / 2$

$$
\begin{equation*}
\sum_{k=1}^{n} \frac{1}{k}-\ln \left(n+\frac{1}{2}\right) \sim \gamma+\frac{1}{24\left(n+\frac{1}{2}\right)^{2}}-\frac{\frac{7}{960}}{\left(n+\frac{1}{2}\right)^{4}}+\frac{\frac{31}{8064}}{\left(n+\frac{1}{2}\right)^{6}}-\frac{\frac{127}{30720}}{\left(n+\frac{1}{2}\right)^{8}}+\ldots \tag{1.6}
\end{equation*}
$$

and we expect to be much faster than (1.4). Moreover we find the following:

Theorem 1. For every $n \in \mathbb{N}$, we have
$\frac{1}{24\left(n+\frac{1}{2}\right)^{2}}-\frac{\frac{7}{960}}{\left(n+\frac{1}{2}\right)^{4}}+\frac{\frac{31}{8064}}{\left(n+\frac{1}{2}\right)^{6}}-\frac{\frac{127}{30720}}{\left(n+\frac{1}{2}\right)^{8}}<\sum_{k=1}^{n} \frac{1}{k}-\ln \left(n+\frac{1}{2}\right)<\frac{1}{24\left(n+\frac{1}{2}\right)^{2}}-\frac{\frac{7}{960}}{\left(n+\frac{1}{2}\right)^{4}}+\frac{\frac{31}{8064}}{\left(n+\frac{1}{2}\right)^{6}}$.
The Results. We give the following
Theorem 2. The following standard asymptotic expansion holds as $n \rightarrow \infty$

$$
\sum_{k=1}^{n} \frac{1}{k}-\ln \left(n+\frac{1}{2}\right)-\gamma \sim \frac{1}{2 n}+\sum_{k=2}^{\infty}\left(\frac{(-1)^{k}}{2^{k}}-B_{k}\right) \frac{1}{k n^{k}}=\frac{1}{24 n^{2}}-\frac{1}{24 n^{3}}+\frac{1}{960 n^{4}}-\ldots
$$

Proof. We have $\psi(x+1)=H_{n}-\gamma$ and using (1.3), we get

$$
\begin{gathered}
\sum_{k=1}^{n} \frac{1}{k}-\ln \left(n+\frac{1}{2}\right)=\left(\sum_{k=1}^{n} \frac{1}{k}-\ln n\right)-\ln \left(1+\frac{1}{2 n}\right) \sim \gamma+\frac{1}{2 n}-\sum_{k=1}^{\infty} \frac{B_{2 k}}{2 k x^{2 k}}-\ln \left(1+\frac{1}{2 n}\right) \\
\sim \gamma+\frac{1}{2 n}-\sum_{k=2}^{\infty} \frac{B_{k}}{k x^{k}}-\sum_{k=1}^{\infty} \frac{(-1)^{k-1}}{k 2^{k} n^{k}} \sim \gamma+\frac{1}{2 n}+\sum_{k=2}^{\infty}\left(\frac{(-1)^{k}}{2^{k}}-B_{k}\right) \frac{1}{k n^{k}} .
\end{gathered}
$$

Theorem 1 can be proved by defining the sequences

$$
\begin{gathered}
a_{n}=\frac{1}{24\left(n+\frac{1}{2}\right)^{2}}-\frac{\frac{7}{960}}{\left(n+\frac{1}{2}\right)^{4}}+\frac{\frac{31}{8064}}{\left(n+\frac{1}{2}\right)^{6}}-\frac{\frac{127}{30720}}{\left(n+\frac{1}{2}\right)^{8}}-\left(\sum_{k=1}^{n} \frac{1}{k}-\ln \left(n+\frac{1}{2}\right)\right) \\
b_{n}=\sum_{k=1}^{n} \frac{1}{k}-\ln \left(n+\frac{1}{2}\right)-\left(\frac{1}{24\left(n+\frac{1}{2}\right)^{2}}-\frac{\frac{7}{960}}{\left(n+\frac{1}{2}\right)^{4}}+\frac{\frac{31}{8064}}{\left(n+\frac{1}{2}\right)^{6}}\right)
\end{gathered}
$$

and showing that they are strictly increasing to zero. As consequence, $\mathrm{a}_{\mathrm{n}}<0$ and $\mathrm{b}_{\mathrm{n}}<0$.

REFERENCES

[1] Abramowitz, M., Stegun, I.A., Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, National Bureau of Standards, Applied Mathematical Series, 55, $9^{\text {th }}$ printing, Dover, New York, 1972.
[2] Alzer, H., Abh. Math. Sem. Univ. Hamburg, 68, 363-372, 1998.
[3] Anderson, G.D., Barnard, R.W., Richards, K.C., Vamanamurthy, M.K., Vuorinen, M., Trans. Amer. Math. Soc., 347, 1713-1723, 1995.
[4] Chen, Ch.-P., Appl. Math. Lett., 23, 161-164, 2010.
[5] Rippon, P.J., Amer. Math. Monthly, 93, 476-478, 1986.
[6] DeTemple, D.W., Amer. Math. Monthly, 100, 468-470, 1993.
[7] Tims, S.R., Tyrrell, J.A., Math. Gaz., 55, 65-67, 1971.
[8] Tóth, L., Amer. Math. Monthly, 98, 264, 1991.
[9] Young, R.M., Math. Gaz., 75, 187-190, 1991.

