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INTRODUCTION 
 

The Euler-Mascheroni constant γ=0.577215664… is defined as the limit of: 
lnn nD H n                                                           (1.1) 
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  . where Hn denotes the nth harmonic number, defined for n

Several bounds for nD   have been given in the literature [2, 3, 5, 7-9]. The 

convergence of the sequence Dn to γ is very slow. Some quicker approximations to the Euler-
Mascheroni constant were established and we mention here the following sequence 

introduced by DeTemple [6]: 
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First we use the asymptotic series of the digamma function ψ in terms of Bernoulli 
numbers 
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 (see, e.g., [1]) to deduce the standard asymptotic series of DeTemple's sequence 
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Recently, Chen [4] obtained the following sharp form of the inequality (1.2): 
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with the best possible constants 1
1 0.55106...
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We propose the following series in negative powers of 1 2n   
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and we expect to be much faster than (1.4). Moreover we find the following: 
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Theorem 1. For every , we have n
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The Results. We give the following 
Theorem 2. The following standard asymptotic expansion holds as  n 
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Proof. We have  1 nx H     and using (1.3), we get 
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Theorem 1 can be proved by defining the sequences 
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and showing that they are strictly increasing to zero. As consequence, an<0 and bn<0. 
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