Journal of Science and Arts Year 10, No. 2(13), pp. 273-280, 2010

LOCALLY AFFINE FUNCTIONS

CORNELIU UDREA

University of Pitesti, Faculty of Mathematics and Computer Science, 110040, Pitesti, Romania

Abstract. The Monge-Ampére equation and related boundary value problem are a
source example for the non-linear potential theory, and for convex analysis ([1-5, 8]).
Moreover the concept of the locally convex function is introduced in the study of the solutions
of this equations ([1, 3, 5, 9]). In this paper an attempt is made to define a generalization of
this type of functions (i.e. it is defined the quasi-locally convex functions), some properties of
the quasi-locally convex functions are studied, and an important example of quasi-locally
affine function is presented.
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1. INTRODUCTION

In this section we recall some notions, notations, and results of the convex analysis
from [5], [6], [8] or [9], which will be used in the next sections. Here S is a nonempty subset

of R*, f is a numerical function on S and F is a non-empty subset of R* xR .

Definition 1.1

(1). The set {(x,&)e SxR: f(x)< &} is called the epigraph of f , and is denoted by
epif . (Obviously epif ¢ R¥xR).

(ii). The function f is called convex function (respectively lower semicontinuous
function) if epif is a a convex (respectively closed ) subset of R**' (respectively of SxR).

(111). We define ¢ TPy F — [—o,0) by the following formula:

o (X):=inf{& eR:(X,&) e F}, for all X € Pry F.

Remark 1.2

(1). A real function g on S is convex (respectively lower semi-continuous) if and

only if S is a convex subset of R*, and for all x,yeS and te(0,1),
f((1-t)x+ty) < (1-t) f(X)+tf (y) (respectively forall xe S, f(Xx)= lim inf f(y)) ([6]).
Say—X
(ii). If F is a convex subset of R*xR , then C := Py F is convex and ¢ :C — R is

convex.
(iii). Suppose that for all XeerkF there exists a,€R such that

{ueR:(X,u)e F} cla,,»©). Then ¢ is a real function.
(iv). If F is a closed subset of R*xR, and F c R* x[e,,©), where o, € R, then the

function ¢ is a real, lower semicontinuous function.
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274 Locally affine functions Corneliu Udrea

Definition 1.3

(i). Denote by cof the function ¢, .., i.€. the greatest numerical con-vex function g
on R such that g |s< f . The function cof is called the convex hull of f .

(i1). Similar Pt = scif , and scif is the greatest numerical lower semicontinuous
function g on R* such that g|.< f . The map scif is called the lower semicontinuous hull

of f.
(iii). We define cIf :=sci(cof ). This function is called the lower semicontinuous

convex hull off. If f is convex, then clf is said to be the closed hull of f .

Remark 1.4

(1). From now on we shall use the following notations.
k+2

J:={12,...,k+2}, and A= {t €[0,1]7 :t = (t,,t,,....t,,,), and DL, =1}.
j=1

Obviously A is a convex compact subset of R***.
(i1). In view of the Carathéodory's theorem ([7]) we have that

co(epif ) = {Zt,.(xj,gj) ‘teAand{(x;,&)}., < epif}
jed
and for all x € P (co(epif))
(cof )(x) = inf{thgj te A{(X;,E))} . cepif andx=1x, }
jed jed
(ii1). According to the previous remark if a€ S is an extremal point of the set coS,
then (cof )(a)= f(a).

Proposition 1.5

Let F be compact, and convex. The function ¢ is a real convex, and lower
semicontinuous function on the compact convex set C = P F ([8, 9]).

Proof. Obviously ¢ is a real convex function on C, and since
epige ={(X, @ (X)+y):xeCandy €[0,0)}
={(x,g+Yy):(x,§) e F,and y €[0,0)} = F +{0, } x[0,0)

the set epig; is closed and ¢ is lower semicontinuous on C. m

Example 1.6

We consider C a non-empty, compact, and convex subset of R, f a real continuous
functionon C, G, = {(X, f(x)):x € C} (the graph of f )and K, :=coG; . Obviously K, is

a convex, compact subset of R* xR . We define Pi = P, ([8, 9D).
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Theorem 1.7

The function ¢, (defined in Example 1.6) has the following properties ([8, 9]).

(i). It is a real, convex, and lower semicontinuous function on C.
(ii). For all aeC, there exist teA and {x;};,, cC such that a:thxj and

jed

s (a)zztjf(xj)'

jed
(iii).We have the relations ¢, = cof =clIf , and ¢, |,.= f |... (Where exC denotes the

extremal points of C).
Proof.

(i). We use Proposition 1.5.

(i1). Let us consider pr, : K; > R, prp(X,&)=¢& for all (x,&) € K, . According to the
definition for all aeC, ¢, (a) = inf{pry(a,&): & € Rsuch that (a,&) e K }.

Since K, is a compact set, and pr, is a continuous function there exists £ € R with
the properties (a,&) € K, , and ¢, (a)=¢.

Therefore there exist t = (t,,t,,...,t,,) €A, and {X;};,;, = C such that

a=Y1x, &=t f(x)=>0@=&=D% f(x).
jed jed jed
(iii). It is a consequence of Remark 1.4.(iii). m

Remark 1.8

For all C non-empty, convex subset of R we define the relative interior of the set C
as the interior which results when C 1is regarded as a subset of its affine hull. This set is

denoted by int, C . The set E\intrC is called the relative boundary of C and it is denoted by
0,C.

2. LOCALLY CONVEX FUNCTIONS

We generalize the notion of the locally convex function (defined in [1] and [3]) and
we present some properties of these functions.

In this section F is a non-empty subset of R*, and f is a real function on a subset A
of R* where A F .

Definition 2.1

(). The function f is called quasi-locally convex function on F if for all X e F there
exists V a neighbourhood of X such that V nF is a convex set, and the function f |, . is

convex.
(ii). If the functions f and — f are quasi-locally convex functions on F, then f is

called quasi-locally affine function on F .
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Remark 2.2

(1). The following assertions are equivalent. (a). The function f is quasi-locally
convex on F . (b). There exists R an open covering of F such that RN F is a convex set,
and f |5 is a convex function, forall Re R .

(ii). If F is an open subset of R*, then the following assertions are equivalent. (a).
The function f is quasi-locally convex. (b). There exists R an open covering of F such that

R is convex subset of F, and f |; is a convex function, for all Re R (i.e. according to [1]
and [3] f is locally convex function on F).

(iii). Since every quasi-locally affine function on F is locally continuous on F we
have that all quasi-locally affine function on F is continuous on F .
(iv). Let s be a real, convex function on the line segment [a,b] (respectively (a,b)).

According to [4], [6], and [9] we have the following assertions.

(a). If ¢ is a point from (a,b) such that s(c)=maxs([a,b]) (respectively
s(c) = max s((a,b)) ) then s(x)=s(c) forall x e[a,b] (respectively for all x € (a,b)).
(b). The function S is upper semicontinuous on [a,b].

Lemma 2.3

If f is a real quasi-locally convex function on the set F, and a,b are two points of
F such that [a,b]c F, then f isan upper semicontinuous function on [a,b].

Proof.
In view of the general convex analysis f is continuous at all point

ce(a,b)=int,([a,b]). If V is an open convex subset of R* such that V NF is a convex set,
f |, ~r 18 a convex function, and either beV , and a¢V or b¢V, and a€V , then either
V nF n[a,b]=V n[a,b]=(b,,b], or VNF N[a,b]=V Nn[a,b]=[a,a,).

According to the previous remark f |(b1’b1 (respectively f |[a’a1>) is upper semicontinuous at

the point b (respectively at the point a). m
Theorem 2.4

Given f a real quasi-locally convex function on the set F, and C a nonempty
convex subset of F it follows that the function f | is convex.

Proof. (Similar to [3]). We want to prove that f((1-t)a+th)<(1-t)f(a)+tf(b) for all
a,beC,and t €(0,1). So that we consider a,b different points from C.

Suppose that f(a)= f(b), and define M :=sup f([a,b]), and
S:={cela,b]: f(c)=M}={f =M}nJ[a,b]. It is obvious that M € R and S is non-empty.
Let T be the set ({te[0,1]:(1-t)a+tbeS}, t,:=supT, and ¢:[0,1]>R,
pt)=f((1-t)a+th).

Assume that t, €(0,1), hence ¢, :=(1-t))a+t,be(a,b), t,eT and c,eS. Take V
an open convex subset of R* such that ¢, eV, a,b¢V, VF is convex, and f|, . isa
convex function. Hence V NnF n[a,b]=V Nn[a,b]=(a,,b) where c, e(a,b)c(a,b), and
b, ¢S. Therefore f(a,)<M,and f(b)<M.
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If ¢, =(1-t)a, +tb,, t€(0,1), then
M=f(c,)<(1-t)f(a)+tf(b)<M =t,=1,c,=beS.
Therefore for all t € (0,1)
f(I-t)a+th) <M =(1-t)M +tM = (1-t) f (a) +tf (b).

Suppose now that f(a)= f(b), and let U be a linear functional on R* such that
f(a)—u(a)= f(b)—u(b). Obviously f-u is a quasi-locally convex function,
(f —u)(@)=(f —u)(b), and in view of the previous step it follows that

(f—u)((1-ta+th)<(1-t)(f —u)@) +t(f —u)b)
for all t € (0,1). Since U is a linear functional we have that
f((I-t)ya+th)<(1-t)f(a)+tf(b),Vte(0,1).m

Corollary 2.5

Let F be such that for all xeF there exists V a neighborhood of x such that
V nF isconvex, and let f be areal function on F . The following assertions are equivalent.

(i). The function f is quasi-locally convex on F .
(ii). For all C convex subset of F, f |. isa convex function.
Proof. It is obvious. m

Corollary 2.6

If F is a convex set, and f is a quasi-locally convex function on F, then f is a

convex function on F .
Proof. It is obvious. m

Proposition 2.7

Take {C},_,,, convex subsets of R* such that C, = C,, and C, is a closed set. Let u,
(respectively u,) be a real convex function on C, (respectively C,) with the following
properties U, o <u;,and u, |, c =U; [ c -

u on C,
u, on C,\C,
Proof. We want to prove that u |, is a convex function for all a,beC,. If [a,b]=C/\C,,

Then the function u:C, >R, u ={ is convex on C,.

then U|,,=U,lap;> and U|,, is a convex function. Otherwise [a,b]NC, #O. Take
sup(u, —¢&,uU,) on C,

e€(0,0), define u, :C, >R, u,= and remark that by the
u, on C,\C,

hypothesis u, is quasi-locally convex function on [a,b]. Hence u, is a convex function on

[a,b]. Since U|,,= lgiglug ljapy We have that u|, ,, is a convex function.m
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3. LOCALLY AFFINE FUNCTIONS

We prove some results about continuity of convex functions, and we present an
example of a locally affine function.

In this section U is a non-empty, open, bounded, and strictly convex subset of R*
(the strictly convex property means that for all a,bedU , a#b, we have (a,b)cU ).

Lemma 3.1

Forall aedU, and r e (0,0) there exists d, € (0,o0) such that §G(a + x),er cU

forall xeU \B(a,r) ([1]).
Proof. Obviously %(a+ x)e(a,x)cU for all xeU \{a}, and K =%(a+(U\ B(a,r))) is a
compact set which is contained in U, hence d:=dist(K,0U) is strictly positive. Define

d

r

:=% and remark that for all XeU\B(a,r), dist(é(a+x),8UJ2d >d,, therefore
=1 1
B[E(a+x),drjc B(E(a+ x,d)jcu .

Lemma 3.2

For all acdU, and re(0,0) there exists u an affine function on R* such that
u@=1,u<1 onU,and u<0 on U\B(a,r)(1]).

Proof. According to the first separation theorem we have v an affine function on R* with
the following properties v(a)=0, and v|,<0. In view of the previous lemma let d, be a

positive number such that E(% (a+ X),drj cU forall xeU \ B(a,r).

We fix a point beB(a,d,)\U such that a:=v(b)>0, and we remark that for all
xeU\B(a,r), %(x+ b) e BG(xm),drj cu, v(%(x+b)) <0, and v(x)<-v(b) = -« .
If we  define u:= é(v +a), then u is  affine  function, ua)=1,
u(x)= é(v(x)+v(b)) = év(x+b) <0, forall xeU\ B(a,r), and u(x)= é(v(x) +a)<1 for
all xeU . m

Theorem 3.3

If f is a real, lower semicontinuous and convex function on U such that f |, is a

continuous function, then f is continuous on U .
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Proof. Let a be a boundary point of U, &£e(0,0), and r, €(0,0) such that

| f(x)—f(a)l[<e for all X eE(a, r.)mou . Take u the affine function of Lemma 3.2 for
r.,a,and U.

Then Um{u >0}cB(a,r.), and W:={u>0}nB(a,r,) is an open convex
neighbourhood of a. If xeW nU (hence u(x) = (0,1)), and d is a line contained in the
hyperplane {u=u(x)}, and passing trough the point X, then d N (0U)={x,,X,} where
u(x,) =u(x,)=u(x)>0, x,x, € B(,r,), and x=(1-t)X, + X, where t(0,1).

Since f is a convex function we have

fX)<A-H)f(x)+tF(x) <(1-t)(f@)+e)+t(f(a)+e)=f(a)+e.
Therefore f(x)< f(a)+¢ for all xeWNU, and 1im sup f(X)< f(a)+¢&. Hence

Usx—a

1im sup f(X)< f(a) i.e. f is upper semicontinuous in every point a€dU, so that f is

Usx—a

continuous in any boundary point of U . m

Corollary 3.4

(i). Let f be a real, and continuous function on U . The function cof is continuous

onU.

(ii). Take f, and f, real, convex, and continuous on U. We have that
f, A f,:==co(inf(f,, f,)) is continuous on U.
Proof. (i). According to the Theorem 1.7, cof =clIf is a lower semicontinuous, and convex
function on U such that (cof )|,y = f |, » hence (cof )|y, is continuous. We apply Theorem
3.3 to the function cof .
(ii). We use (i) for the function inf(f,, f,). m

Theorem 3.5

Let D be a non-empty, open, bounded, convex subset of R*, f a real continuous
functionon D, and F := {cof < f}. Then cof is a locally affine function on the set F A\ D .
Proof. Denote by S the function cof :D — R and remark that in view of Theorem 1.7 the

function S is convex, lower semicontinuous on 5, and continuous on D. Moreover
FAD={xeD:s(x)< f(x)} is an open subset of D. If ac F D then s(a)< f(a) and

there exists I, € (0,00) such that B(a,r))c F D, and s(x) < f(y) forall X,y e B(a,r,).
Take b and ¢ from B(a,r,) (b#c), and define for all te[0,1] h:[b,c]> R,
h((1-t)b+tc) := (1-t)s(b) +ts(c). Obviously h is an affine function on [b,c], and for all
t €[0,1] we have that
h((1-t)b+tc)=(1-t)s(b)+ts(c) <(1-t) f((1-t)b+tc)+tf (1-t)b+tc) = f((1-t)b+tc)
i.e. h(x) < f(x) forall x e[b,c]. Moreover h(b)=s(b), h(c)=s(c), and s|, ,<h.
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We apply Proposition 2.7 and we have that the function U ‘DoR,
ye {h on [b,c]
u, on D\[b,c]
u <cof =s, hence for all t €[0,1]
s((I-t)b+tc) < (1-t)s(b)+ts(c) =h((1-t)b+tc)=u((1-t)b+tc) <s((1-t)b+tc)
i.e. s((1-t)b+tc) = (1-t)s(b)+ts(c) forall t[0,1], and b,c € B(a,r,). m

is convex on D, and u<f on D. According to the definition

Corollary 3.6

If f isa real continuous function on U, then cof is a locally affine function on the
set {cof < f}

Proof. By the Theorems 1.7 and 3.3 cof is a continuous, convex function on U such that
(cof )|,,= f . Therefore {cof < f} U, and we apply the previous theorem. m
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