LOCALLY AFFINE FUNCTIONS

CORNELIU UDREA

University of Pitesti, Faculty of Mathematics and Computer Science, 110040, Pitesti, Romania

Abstract

The Monge-Ampère equation and related boundary value problem are a source example for the non-linear potential theory, and for convex analysis ([1-5, 8]). Moreover the concept of the locally convex function is introduced in the study of the solutions of this equations ($[1,3,5,9]$). In this paper an attempt is made to define a generalization of this type of functions (i.e. it is defined the quasi-locally convex functions), some properties of the quasi-locally convex functions are studied, and an important example of quasi-locally affine function is presented.

Keywords: locally affine, epigraph, function.

1. INTRODUCTION

In this section we recall some notions, notations, and results of the convex analysis from [5], [6], [8] or [9], which will be used in the next sections. Here S is a nonempty subset of \mathbb{R}^{k}, f is a numerical function on S and F is a non-empty subset of $\mathbb{R}^{k} \times \mathbb{R}$.

Definition 1.1

(i). The set $\{(x, \xi) \in S \times \mathbb{R}: f(x) \leq \xi\}$ is called the epigraph of f, and is denoted by epif. (Obviously epif $\subset \mathbb{R}^{k} \times \mathbb{R}$).
(ii). The function f is called convex function (respectively lower semicontinuous function) if epif is a a convex (respectively closed) subset of \mathbb{R}^{k+1} (respectively of $S \times \mathbb{R}$).
(iii). We define $\varphi_{F}: \operatorname{pr}_{\mathbb{R}^{k}} F \rightarrow[-\infty, \infty)$ by the following formula:

$$
\varphi_{F}(x):=\inf \{\xi \in \mathbb{R}:(x, \xi) \in F\}, \text { for all } x \in \operatorname{pr}_{\mathbb{R}^{k}} F
$$

Remark 1.2

(i). A real function g on S is convex (respectively lower semi-continuous) if and only if S is a convex subset of \mathbb{R}^{k}, and for all $x, y \in S$ and $t \in(0,1)$, $f((1-t) x+t y) \leq(1-t) f(x)+t f(y)$ (respectively for all $\left.x \in S, f(x)=\lim _{S \ni y \rightarrow x} \inf f(y)\right)([6])$.
(ii). If F is a convex subset of $\mathbb{R}^{k} \times \mathbb{R}$, then $C:=\operatorname{pr}_{\mathbb{R}^{k}} F$ is convex and $\varphi_{F}: C \rightarrow \overline{\mathbb{R}}$ is convex.
(iii). Suppose that for all $x \in \operatorname{pr}_{\mathbb{R}^{k}} F$ there exists $\alpha_{x} \in \mathbb{R}$ such that $\{\mu \in \mathbb{R}:(x, \mu) \in F\} \subset\left[\alpha_{x}, \infty\right)$. Then φ_{F} is a real function.
(iv). If F is a closed subset of $\mathbb{R}^{k} \times \mathbb{R}$, and $F \subset \mathbb{R}^{k} \times\left[\alpha_{0}, \infty\right)$, where $\alpha_{0} \in \mathbb{R}$, then the function φ_{F} is a real, lower semicontinuous function.

Definition 1.3

(i). Denote by cof the function $\varphi_{\text {co(epif) }}$ i.e. the greatest numerical con-vex function g on \mathbb{R}^{k} such that $\left.g\right|_{s} \leq f$. The function cof is called the convex hull of f.
(ii). Similar $\varphi_{\text {epif }}:=\operatorname{sci} f$, and scif is the greatest numerical lower semicontinuous function g on \mathbb{R}^{k} such that $\left.g\right|_{s} \leq f$. The map scif is called the lower semicontinuous hull of f.
(iii). We define $\mathrm{cl} f:=\operatorname{sci}(\operatorname{cof})$. This function is called the lower semicontinuous convex hull off. If f is convex, then clf is said to be the closed hull of f.

Remark 1.4

(i). From now on we shall use the following notations.

$$
J:=\{1,2, \ldots, k+2\}, \text { and } \Delta:=\left\{t \in[0,1]^{k+2}: t=\left(t_{1}, t_{2}, \ldots, t_{k+2}\right), \text { and } \sum_{j=1}^{k+2} t_{j}=1\right\} .
$$

Obviously Δ is a convex compact subset of \mathbb{R}^{k+2}.
(ii). In view of the Carathéodory's theorem ([7]) we have that

$$
\operatorname{co}(\text { epif })=\left\{\sum_{j \in J} t_{j}\left(x_{j}, \xi_{j}\right): t \in \Delta \text { and }\left\{\left(x_{j}, \xi_{j}\right)\right\}_{j \in J} \subset \text { epif }\right\}
$$

and for all $x \in \operatorname{pr}_{\mathbb{R}^{k}}(\operatorname{co}($ epif $))$

$$
(\operatorname{cof})(x)=\inf \left\{\sum_{j \in J} t_{j} \xi_{j}: t \in \Delta,\left\{\left(x_{j}, \xi_{j}\right)\right\}_{j \in J} \subset \text { epif and } x=\sum_{j \in J} t_{j} x_{j}\right\} .
$$

(iii). According to the previous remark if $a \in S$ is an extremal point of the set coS, then $(\operatorname{cof})(a)=f(a)$.

Proposition 1.5

Let F be compact, and convex. The function φ_{F} is a real convex, and lower semicontinuous function on the compact convex set $C=\operatorname{pr}_{\mathbb{R}^{k}} F([8,9])$.
Proof. Obviously φ_{F} is a real convex function on C, and since

$$
\begin{aligned}
& \text { epi } \varphi_{F}=\left\{\left(x, \varphi_{F}(x)+y\right): x \in C \text { and } y \in[0, \infty)\right\} \\
& =\{(x, \xi+y):(x, \xi) \in F, \text { and } y \in[0, \infty)\}=F+\left\{0_{k}\right\} \times[0, \infty)
\end{aligned}
$$

the set epi φ_{F} is closed and φ_{F} is lower semicontinuous on C.

Example 1.6

We consider C a non-empty, compact, and convex subset of \mathbb{R}^{k}, f a real continuous function on $C, G_{f}:=\{(x, f(x)): x \in C\}$ (the graph of f) and $K_{f}:=\operatorname{co} G_{f}$. Obviously K_{f} is a convex, compact subset of $\mathbb{R}^{k} \times \mathbb{R}$. We define $\varphi_{f}:=\varphi_{K_{f}}([8,9])$.

Theorem 1.7

The function φ_{f} (defined in Example 1.6) has the following properties ($[8,9]$).
(i). It is a real, convex, and lower semicontinuous function on C.
(ii). For all $a \in C$, there exist $t \in \Delta$ and $\left\{x_{j}\right\}_{j \in J} \subset C$ such that $a=\sum_{j \in J} t_{j} x_{j}$ and $\varphi_{f}(a)=\sum_{j \in J} t_{j} f\left(x_{j}\right)$.
(iii). We have the relations $\varphi_{f}=\operatorname{cof}=\operatorname{clf}$, and $\left.\varphi_{f}\right|_{\text {exC }}=\left.f\right|_{\text {exc }}$ (where exC denotes the extremal points of C).
Proof.
(i). We use Proposition 1.5.
(ii). Let us consider $\mathrm{pr}_{\mathbb{R}}: K_{f} \rightarrow \mathbb{R}, \operatorname{pr}_{\mathbb{R}}(x, \xi)=\xi$ for all $(x, \xi) \in K_{f}$. According to the definition for all $a \in C, \varphi_{f}(a)=\inf \left\{\operatorname{pr}_{\mathbb{R}}(a, \xi): \xi \in \mathbb{R}\right.$ such that $\left.(a, \xi) \in K_{f}\right\}$.

Since K_{f} is a compact set, and $\mathrm{pr}_{\mathbb{R}}$ is a continuous function there exists $\xi \in \mathbb{R}$ with the properties $(a, \xi) \in K_{f}$, and $\varphi_{f}(a)=\xi$.

Therefore there exist $t=\left(t_{1}, t_{2}, \ldots, t_{k+2}\right) \in \Delta$, and $\left\{x_{j}\right\}_{j \in J} \subset C$ such that

$$
a=\sum_{j \in J} t_{j} x_{j}, \xi=\sum_{j \in J} t_{j} f\left(x_{j}\right) \Rightarrow \varphi_{f}(a)=\xi=\sum_{j \in J} t_{j} f\left(x_{j}\right) .
$$

(iii). It is a consequence of Remark 1.4.(iii).

Remark 1.8

For all C non-empty, convex subset of \mathbb{R}^{k} we define the relative interior of the set C as the interior which results when C is regarded as a subset of its affine hull. This set is denoted by $\operatorname{int}_{r} C$. The set $\bar{C} \backslash$ int $_{r} C$ is called the relative boundary of C and it is denoted by $\partial_{r} C$.

2. LOCALLY CONVEX FUNCTIONS

We generalize the notion of the locally convex function (defined in [1] and [3]) and we present some properties of these functions.

In this section F is a non-empty subset of \mathbb{R}^{k}, and f is a real function on a subset A of \mathbb{R}^{k} where $A \supset F$.

Definition 2.1

(i). The function f is called quasi-locally convex function on F if for all $x \in F$ there exists V a neighbourhood of x such that $V \cap F$ is a convex set, and the function $\left.f\right|_{V \cap F}$ is convex.
(ii). If the functions f and $-f$ are quasi-locally convex functions on F, then f is called quasi-locally affine function on F.

Remark 2.2

(i). The following assertions are equivalent. (a). The function f is quasi-locally convex on F. (b). There exists \mathcal{R} an open covering of F such that $R \cap F$ is a convex set, and $\left.f\right|_{R \cap F}$ is a convex function, for all $R \in \mathcal{R}$.
(ii). If F is an open subset of \mathbb{R}^{k}, then the following assertions are equivalent. (a). The function f is quasi-locally convex. (b). There exists \mathcal{R} an open covering of F such that R is convex subset of F, and $\left.f\right|_{R}$ is a convex function, for all $R \in \mathcal{R}$ (i.e. according to [1] and [3] f is locally convex function on F).
(iii). Since every quasi-locally affine function on F is locally continuous on F we have that all quasi-locally affine function on F is continuous on F.
(iv). Let s be a real, convex function on the line segment $[a, b]$ (respectively (a, b)). According to [4], [6], and [9] we have the following assertions.
(a). If c is a point from (a, b) such that $s(c)=\max s([a, b])$ (respectively $s(c)=\max s((a, b)))$ then $s(x)=s(c)$ for all $x \in[a, b]$ (respectively for all $x \in(a, b)$).
(b). The function s is upper semicontinuous on $[a, b]$.

Lemma 2.3

If f is a real quasi-locally convex function on the set F, and a, b are two points of F such that $[a, b] \subset F$, then f is an upper semicontinuous function on $[a, b]$. Proof.

In view of the general convex analysis f is continuous at all point $c \in(a, b)=\operatorname{int}_{r}([a, b])$. If V is an open convex subset of \mathbb{R}^{k} such that $V \cap F$ is a convex set, $\left.f\right|_{V \cap F}$ is a convex function, and either $b \in V$, and $a \notin V$ or $b \notin V$, and $a \in V$, then either $V \cap F \cap[a, b]=V \cap[a, b]=\left(b_{1}, b\right]$, or $V \cap F \cap[a, b]=V \cap[a, b]=\left[a, a_{1}\right)$.
According to the previous remark $\left.f\right|_{\left(b_{1}, b\right]}$ (respectively $\left.f\right|_{\left[a, a_{1}\right)}$) is upper semicontinuous at the point b (respectively at the point a).

Theorem 2.4

Given f a real quasi-locally convex function on the set F, and C a nonempty convex subset of F it follows that the function $\left.f\right|_{C}$ is convex.
Proof. (Similar to [3]). We want to prove that $f((1-t) a+t b) \leq(1-t) f(a)+t f(b)$ for all $a, b \in C$, and $t \in(0,1)$. So that we consider a, b different points from C.

Suppose that $f(a)=f(b)$, and define $M:=\sup f([a, b])$, and $S:=\{c \in[a, b]: f(c)=M\}=\{f=M\} \cap[a, b]$. It is obvious that $M \in \mathbb{R}$ and S is non-empty. Let T be the set $\{t \in[0,1]:(1-t) a+t b \in S\}, \quad t_{0}:=\sup T, \quad$ and $\varphi:[0,1] \rightarrow \mathbb{R}$, $\varphi(t):=f((1-t) a+t b)$.

Assume that $t_{0} \in(0,1)$, hence $c_{0}:=\left(1-t_{0}\right) a+t_{0} b \in(a, b), t_{0} \in T$ and $c_{0} \in S$. Take V an open convex subset of \mathbb{R}^{k} such that $c_{0} \in V, a, b \notin V, V \cap F$ is convex, and $\left.f\right|_{V \cap F}$ is a convex function. Hence $V \cap F \cap[a, b]=V \cap[a, b]=\left(a_{1}, b_{1}\right)$ where $c_{0} \in\left(a_{1}, b_{1}\right) \subset(a, b)$, and $b_{1} \notin S$. Therefore $f\left(a_{1}\right) \leq M$, and $f\left(b_{1}\right)<M$.

If $c_{0}=(1-t) a_{1}+t b_{1}, t \in(0,1)$, then

$$
M=f\left(c_{0}\right) \leq(1-t) f\left(a_{1}\right)+t f\left(b_{1}\right)<M \Rightarrow t_{0}=1, c_{0}=b \in S .
$$

Therefore for all $t \in(0,1)$

$$
f((1-t) a+t b) \leq M=(1-t) M+t M=(1-t) f(a)+t f(b) .
$$

Suppose now that $f(a) \neq f(b)$, and let u be a linear functional on \mathbb{R}^{k} such that $f(a)-u(a)=f(b)-u(b)$. Obviously $f-u$ is a quasi-locally convex function, $(f-u)(a)=(f-u)(b)$, and in view of the previous step it follows that

$$
(f-u)((1-t) a+t b) \leq(1-t)(f-u)(a)+t(f-u)(b)
$$

for all $t \in(0,1)$. Since u is a linear functional we have that

$$
f((1-t) a+t b) \leq(1-t) f(a)+t f(b), \forall t \in(0,1) .
$$

Corollary 2.5

Let F be such that for all $x \in F$ there exists V a neighborhood of x such that $V \cap F$ is convex, and let f be a real function on F. The following assertions are equivalent.
(i). The function f is quasi-locally convex on F.
(ii). For all C convex subset of $F,\left.f\right|_{C}$ is a convex function.

Proof. It is obvious.

Corollary 2.6

If F is a convex set, and f is a quasi-locally convex function on F, then f is a convex function on F.
Proof. It is obvious.

Proposition 2.7

Take $\left\{C_{i}\right\}_{i \in\{1,2\}}$ convex subsets of \mathbb{R}^{k} such that $C_{1} \subset C_{2}$, and C_{1} is a closed set. Let u_{1} (respectively u_{2}) be a real convex function on C_{1} (respectively C_{2}) with the following properties $\left.u_{2}\right|_{C_{1}} \leq u_{1}$, and $\left.u_{2}\right|_{\partial_{r} C_{1}}=\left.u_{1}\right|_{\partial_{r} C_{1}}$.

Then the function $u: C_{2} \rightarrow \mathbb{R}, u=\left\{\begin{array}{lll}u_{1} & \text { on } & C_{1} \\ u_{2} & \text { on } & C_{2} \backslash C_{1}\end{array}\right.$ is convex on C_{2}.
Proof. We want to prove that $\left.u\right|_{[a, b]}$ is a convex function for all $a, b \in C_{2}$. If $[a, b] \subset C_{1} \backslash C_{2}$, then $\left.u\right|_{[a, b]}=\left.u_{2}\right|_{[a, b]}$, and $\left.u\right|_{[a, b]}$ is a convex function. Otherwise $[a, b] \cap C_{1} \neq \varnothing$. Take $\varepsilon \in(0, \infty)$, define $u_{\varepsilon}: C_{2} \rightarrow \mathbb{R}, u_{\varepsilon}=\left\{\begin{array}{lll}\sup \left(u_{1}-\varepsilon, u_{2}\right) & \text { on } C_{1} \\ u_{2} & \text { on } & C_{2} \backslash C_{1}\end{array}\right.$ and remark that by the hypothesis u_{ε} is quasi-locally convex function on $[a, b]$. Hence u_{ε} is a convex function on $[a, b]$. Since $\left.u\right|_{[a, b]}=\left.\lim _{\varepsilon \downarrow 0} u_{\varepsilon}\right|_{[a, b]}$ we have that $\left.u\right|_{[a, b]}$ is a convex function.

3. LOCALLY AFFINE FUNCTIONS

We prove some results about continuity of convex functions, and we present an example of a locally affine function.

In this section U is a non-empty, open, bounded, and strictly convex subset of \mathbb{R}^{k} (the strictly convex property means that for all $a, b \in \partial U, a \neq b$, we have $(a, b) \subset U$).

Lemma 3.1

For all $a \in \partial U$, and $r \in(0, \infty)$ there exists $d_{r} \in(0, \infty)$ such that $\bar{B}\left(\frac{1}{2}(a+x), d_{r}\right) \subset U$ for all $x \in \bar{U} \backslash B(a, r)([1])$.
Proof. Obviously $\frac{1}{2}(a+x) \in(a, x) \subset U$ for all $x \in \bar{U} \backslash\{a\}$, and $K=\frac{1}{2}(a+(\bar{U} \backslash B(a, r)))$ is a compact set which is contained in U, hence $d:=\operatorname{dist}(K, \partial U)$ is strictly positive. Define $d_{r}:=\frac{d}{2}$ and remark that for all $x \in \bar{U} \backslash B(a, r)$, $\operatorname{dist}\left(\frac{1}{2}(a+x), \partial U\right) \geq d>d_{r}$, therefore $\bar{B}\left(\frac{1}{2}(a+x), d_{r}\right) \subset B\left(\frac{1}{2}(a+x, d)\right) \subset U$.

Lemma 3.2

For all $a \in \partial U$, and $r \in(0, \infty)$ there exists u an affine function on \mathbb{R}^{k} such that $u(a)=1, u \leq 1$ on \bar{U}, and $u<0$ on $\bar{U} \backslash B(a, r)([1])$.
Proof. According to the first separation theorem we have v an affine function on \mathbb{R}^{k} with the following properties $v(a)=0$, and $\left.v\right|_{U}<0$. In view of the previous lemma let d_{r} be a positive number such that $\bar{B}\left(\frac{1}{2}(a+x), d_{r}\right) \subset U$ for all $x \in \bar{U} \backslash B(a, r)$.

We fix a point $b \in B\left(a, d_{r}\right) \backslash U$ such that $\alpha:=v(b)>0$, and we remark that for all $x \in \bar{U} \backslash B(a, r), \frac{1}{2}(x+b) \in B\left(\frac{1}{2}(x+b), d_{r}\right) \subset U, v\left(\frac{1}{2}(x+b)\right)<0$, and $v(x)<-v(b)=-\alpha$. If we define $u:=\frac{1}{\alpha}(v+\alpha)$, then u is affine function, $u(a)=1$, $u(x)=\frac{1}{\alpha}(v(x)+v(b))=\frac{1}{\alpha} v(x+b)<0$, for all $x \in \bar{U} \backslash B(a, r)$, and $u(x)=\frac{1}{\alpha}(v(x)+\alpha) \leq 1$ for all $x \in \bar{U}$.

Theorem 3.3

If f is a real, lower semicontinuous and convex function on \bar{U} such that $\left.f\right|_{\partial U}$ is a continuous function, then f is continuous on \bar{U}.

Proof. Let a be a boundary point of $U, \varepsilon \in(0, \infty)$, and $r_{\varepsilon} \in(0, \infty)$ such that $|f(x)-f(a)| \leq \varepsilon$ for all $x \in \bar{B}\left(a, r_{\varepsilon}\right) \cap \partial U$. Take u the affine function of Lemma 3.2 for r_{ε}, a, and U.

Then $\bar{U} \cap\{u>0\} \subset B\left(a, r_{\varepsilon}\right)$, and $W:=\{u>0\} \cap B\left(a, r_{\varepsilon}\right) \quad$ is an open convex neighbourhood of a. If $x \in W \cap U$ (hence $u(x) \subset(0,1)$), and d is a line contained in the hyperplane $\{u=u(x)\}$, and passing trough the point x, then $d \cap(\partial U)=\left\{x_{1}, x_{2}\right\}$ where $u\left(x_{1}\right)=u\left(x_{2}\right)=u(x)>0, x_{1}, x_{2} \in B\left(0, r_{\varepsilon}\right)$, and $x=(1-t) x_{1}+x_{2}$ where $t \in(0,1)$.

Since f is a convex function we have

$$
f(x) \leq(1-t) f\left(x_{1}\right)+t f\left(x_{2}\right) \leq(1-t)(f(a)+\varepsilon)+t(f(a)+\varepsilon)=f(a)+\varepsilon .
$$

Therefore $f(x) \leq f(a)+\varepsilon$ for all $x \in W \cap U$, and $\lim _{U \rightarrow x \rightarrow a} \sup f(x) \leq f(a)+\varepsilon$. Hence $\lim _{U \ni x \rightarrow a} \sup f(x) \leq f(a)$ i.e. f is upper semicontinuous in every point $a \in \partial U$, so that f is continuous in any boundary point of U.

Corollary 3.4

(i). Let f be a real, and continuous function on \bar{U}. The function cof is continuous on \bar{U}.
(ii). Take f_{1}, and f_{2} real, convex, and continuous on \bar{U}. We have that $f_{1} \wedge f_{2}:=\operatorname{co}\left(\inf \left(f_{1}, f_{2}\right)\right)$ is continuous on \bar{U}.
Proof. (i). According to the Theorem 1.7, cof $=\mathrm{cl} f$ is a lower semicontinuous, and convex function on \bar{U} such that $\left.(\operatorname{cof})\right|_{\partial U}=\left.f\right|_{\partial U}$, hence $\left.(\operatorname{cof})\right|_{\partial U}$ is continuous. We apply Theorem 3.3 to the function cof .
(ii). We use (i) for the function $\inf \left(f_{1}, f_{2}\right)$.

Theorem 3.5

Let D be a non-empty, open, bounded, convex subset of \mathbb{R}^{k}, f a real continuous function on \bar{D}, and $F:=\{\operatorname{cof}<f\}$. Then cof is a locally affine function on the set $F \cap D$. Proof. Denote by s the function cof $: \bar{D} \rightarrow \mathbb{R}$ and remark that in view of Theorem 1.7 the function s is convex, lower semicontinuous on \bar{D}, and continuous on D. Moreover $F \cap D=\{x \in D: s(x)<f(x)\}$ is an open subset of D. If $a \in F \cap D$ then $s(a)<f(a)$ and there exists $r_{0} \in(0, \infty)$ such that $B\left(a, r_{0}\right) \subset F \cap D$, and $s(x)<f(y)$ for all $x, y \in B\left(a, r_{0}\right)$.

Take b and c from $B\left(a, r_{0}\right)(b \neq c)$, and define for all $t \in[0,1] h:[b, c] \rightarrow \mathbb{R}$, $h((1-t) b+t c):=(1-t) s(b)+t s(c)$. Obviously h is an affine function on $[b, c]$, and for all $t \in[0,1]$ we have that

$$
h((1-t) b+t c)=(1-t) s(b)+t s(c)<(1-t) f((1-t) b+t c)+t f(1-t) b+t c)=f((1-t) b+t c)
$$

i.e. $h(x)<f(x)$ for all $x \in[b, c]$. Moreover $h(b)=s(b), h(c)=s(c)$, and $\left.s\right|_{[b, c]} \leq h$.

We apply Proposition 2.7 and we have that the function $u: \bar{D} \rightarrow \mathbb{R}$, $u=\left\{\begin{array}{lll}h & \text { on } & {[b, c]} \\ u_{2} & \text { on } & \bar{D} \backslash[b, c]\end{array}\right.$ is convex on \bar{D}, and $u \leq f$ on \bar{D}. According to the definition $u \leq \operatorname{cof}=s$, hence for all $t \in[0,1]$ $s((1-t) b+t c) \leq(1-t) s(b)+t s(c)=h((1-t) b+t c)=u((1-t) b+t c) \leq s((1-t) b+t c)$ i.e. $s((1-t) b+t c)=(1-t) s(b)+t s(c)$ for all $t \in[0,1]$, and $b, c \in B\left(a, r_{0}\right)$.

Corollary 3.6

If f is a real continuous function on \bar{U}, then cof is a locally affine function on the set $\{\operatorname{cof}<f\}$
Proof. By the Theorems 1.7 and 3.3 cof is a continuous, convex function on \bar{U} such that (cof) $\left.\right|_{\partial U}=f$. Therefore $\{\operatorname{cof}<f\} \subset U$, and we apply the previous theorem.

REFERENCES

[1] Bertin, E.M.J., Fonctions convexes et theorie du potentiel, INDAG. MATH., Univ. Utrecht, Utrecht, 385-409, 1979.
[2] Bertin, E.M.J., Axiomatic Convex Potential Theory, Preprint 607, Univ. Utrecht, Utrecht, 1990.
[3] Bertin, E.M.J., L'équation de Monge-Ampère dans un espace de Banach, in Classical and Modern Potential Theory and Applications, 61-75, 1994.
[4] van Beusekan, P., Monotone Dirichlet Forms and Resolvents, Prep. no. 731, Univ. Utrecht, Utrecht, 1992.
[5] van Gool, F., Topics in Non Linear Potential Theory. Graduate thesis, Univ. Utrecht, Utrecht, 1992. Proc. of I.C.P.T.91, Kluwer Ac. Publ, 61-89, 1994.
[6] Rockafellar, T., Convex Analysis, Princeton University Press, Princeton, 1970.
[7] Rudin, W., Functional Analysis., McGraw-Hill Book Company, 1973.
[8] Udrea, C., Rev. Roum. de Math. Pures et Appl., XL, 691-712, 1995.
[9] Udrea, C., The Perron-Wiener-Brelot Method and the Monge-Ampère Equation, Proc. of XVI-th R. Nevanlinna Coll., Walter de Gruyters \& Co, 279-287, 1996.

