ORIGINAL PAPER

ESTIMATES FOR $e^{x}-\left(1+\frac{x}{t}\right)^{t}$ AND APPLICATIONS

CRISTINEL MORTICI ${ }^{1}$, CHAO-PING CHEN ${ }^{2}$
${ }^{1}$ Valahia University of Targoviste, Faculty of Science and Arts, 130082, Targoviste, Romania
${ }^{2}$ School of Mathematics and Informatics, Henan Polytechnic University, Jiaozuo City 454003, Henan Province, People's Republic of China

Abstract. The aim of this paper is to give a short proof of an inequality bounding $e^{x}-\left(1+\frac{x}{t}\right)^{t}$, stated in [1]. Also some improvements are given.

MSC: 26D15; 26A06; 26A48.
Keywords: Inequalities, number e, exponential function.

INTRODUCTION

The main result of [1], established via harm onic, logarithmic and arithm etic mean inequality, is the following double inequality

$$
\begin{equation*}
\frac{x^{2} e^{x}}{2 t+x+\max \left\{x, x^{2}\right\}}<e^{x}-\left(1+\frac{x}{t}\right)^{t}<\frac{x^{2} e^{x}}{2 t+x}, \quad\left(x>0, t>\frac{1-x}{2}\right) \tag{1}
\end{equation*}
$$

together with a dual inequality. See [1, Theorem 1].
We give a sim ple proof of (1), using the following elem entary consequence of Lagrange Theorem:

$$
\begin{equation*}
x(a-b) b^{x-1}<a^{x}-b^{x}<x(a-b) a^{x-1}, \quad(x>a, \quad 0<b<a) \tag{2}
\end{equation*}
$$

It is considered in [1] $x=1, \quad t=n \in N$ case to rediscover the inequality

$$
\begin{equation*}
\frac{e}{2 n+2}<e-\left(1+\frac{1}{n}\right)^{n}<\frac{e}{2 n+1} \tag{3}
\end{equation*}
$$

stated in [2, Problem 170]. However, inequality (3) is tru e even if n is any positive real number, and this fact motivated us to give a short proof of (1), starting from (3), with $n=t / x$:

$$
\begin{equation*}
\frac{e x}{2 t+2 x}<e-\left(1+\frac{x}{t}\right)^{\frac{t}{x}}<\frac{e x}{2 t+x} \tag{4}
\end{equation*}
$$

Theorem 1. For all real numbers $x, t>0$, it holds:

$$
\begin{equation*}
x\left(e-\left(1+\frac{x}{t}\right)^{\frac{t}{x}}\right)\left(\left(1+\frac{x}{t}\right)^{\frac{t}{x}}\right)^{x-1}<e^{x}-\left(1+\frac{x}{t}\right)^{t}<x\left(e-\left(1+\frac{x}{t}\right)^{\frac{t}{x}}\right) e^{x-1} \tag{5}
\end{equation*}
$$

The proof follows by (2), with $a=e$ and $b=\left(1+\frac{x}{t}\right)^{\frac{t}{x}}$.
Note that the upper bound in (5) is better than the upper bound in (1), since using (4), we obtain

$$
x\left(e-\left(1+\frac{x}{t}\right)^{\frac{t}{x}}\right) e^{x-1}<x \frac{e x}{2 t+x} e^{x-1}=\frac{x^{2} e^{x}}{2 t+x}
$$

Numerical computations prove also the superiority of lower bound in (5) over lower bound (1). W e are able to give a rigorous proof of this fact in $x \leq 1$ case, when $\max \left\{x, x^{2}\right\}=x$. Indeed, using again (4), we deduce

$$
x\left(e-\left(1+\frac{x}{t}\right)^{\frac{t}{x}}\right)\left(\left(1+\frac{x}{t}\right)^{\frac{t}{x}}\right)^{x-1}>\frac{e x^{2}}{2 t+2 x}\left(\left(1+\frac{x}{t}\right)^{\frac{t}{x}}\right)^{x-1}=\left(\frac{1}{e}\left(1+\frac{x}{t}\right)^{\frac{t}{x}}\right)^{x-1} \frac{x^{2} e^{x}}{2 t+2 x}>\frac{x^{2} e^{x}}{2 t+2 x}
$$

In conclusion, being d erived from (5), inequality (1) is a simple consequence of Lagrange Theorem. Notice also that (5) is tru e for all $x, t>0$ a supplementary condition as required in (1) is not necessary.

Finally, we give
Theorem 2. The following inequality holds

$$
\begin{equation*}
e^{x}-\left(1+\frac{x}{t}\right)^{t}<\frac{(3 t-2 x) x^{2} e^{x}}{6 t^{2}} . \tag{6}
\end{equation*}
$$

whenever $x \geq 1$ and $t>\max \left\{\frac{2}{3} x+2, \frac{1}{4} x^{2} \frac{1}{12} \sqrt{9 x^{4}-48 x^{3}}\right\}$. If $1 \leq x<\frac{16}{3}$, then it s uffices $t>\frac{2}{3} x+2$.
Proof. First remark that (6) is a new improvement of upper bound (1), since

$$
\frac{(3 t-2 x) x^{2} e^{x}}{6 t^{2}}=\frac{x^{2} e^{x}}{2 t+x}-\frac{(t+2 x) x^{3} e^{x}}{6 t^{2}(2 t+x)}<\frac{x^{2} e^{x}}{2 t+x} .
$$

In order to prove inequality (6), it suffices to show that $f_{t}<0$, where

$$
f_{t}(x)=\ln \left(1-\frac{(3 t-2 x) x^{2}}{6 t^{2}}\right)+x-t \ln \left(1+\frac{x}{t}\right)
$$

But f_{t} is strictly decreasing in x, since

$$
\begin{gathered}
f_{t}^{\prime}(x)=-\frac{x^{3}(3 t-2 x-6)}{(t+x)\left(6 t^{2}-3 t x^{2}+2 x^{3}\right)}<0, \text { with } \\
f_{t}(1)=\ln \left(\frac{1}{3 t^{2}}-\frac{1}{2 t}+1\right)-t \ln \left(\frac{1}{t}+1\right)+1<0, \quad t>\frac{2}{3}+3 .
\end{gathered}
$$

Now $f_{t}(x) \leq f_{t}(1)<0$ for $x \geq 1$, which completes the proof.
By taking $t=n \geq 3>\frac{8}{3}$ and $x=1$, we obtain the following refinement of upper bound (3)

$$
e-\left(1+\frac{1}{n}\right)^{n}<\frac{(3 n-2) e}{6 n^{2}}=\frac{e}{2 n+1}-\frac{(n+2) e}{6 n^{2}(2 n+1)}<\frac{e}{2 n+1}
$$

but we are convinced that eventually different methods can provide much better estimates (3).

REFERENCES

[1] Niculescu, C., Vernescu, A., J. Inequal. Pure Appl. Math., 5(3), Art. 55, 2004.
[2] Pólya, G., Szegö, G., Problems and Theorems in Analysis, Springer-Verlag, Berlin Heidelberg New York, 1978.

