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Abstract. In this paper we analyze two problems of combinatorial geometry, colouring 

problems, that, by the solving method have a tight connection with the series   

Particular cases of these problems have been proposed at the International Mathematical 
Olympiads, editions V and XX. 
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1. INTRODUCTION 
 

Surprisingly, some colouring and num bering problems (combinatorial geometry), 
which in particular forms have been given at International Olympiads, are connected with the 
series  

 

The connection between the problems that we will pr esent and the number  is based 
on the recurrence relationships satisfied by the partial sums sequences  

 
and by the sequences ,  defined by 

 

(R1):  
(R2):  
(R3):  . 

 
Remark 1.1. The sequence  can be defined by its general term: 

 
We have: 

 

 

 
where 
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Since  and , we have:  (we denoted  
the integer part of the number  and  the fractionary part of ). 
 
2. COLOURINGS WITH MONOCHROMATIC TRIANGLES 
 

At the V-th O.I.M. edition in Moscow, the following problem was given: 
Consider 17 points in the plane, each 3 of them non-collinear. Each segment that joins 

two points is coloured in one of the colours: red, yellow and blue. P rove that at least one 
monochromatic triangle is form ed (having the sides of the same colour). Following the 
argument made in solving the problem, this can be generalized like this: 

 
Problem 2.1. For each natural number , consider a set  of  

 

points in plane, each three non-collinear. The segments that join two points are colo ured each 
with one of the n given colours. Prove that in any colouring there exist a m onochromatic 
triangles. 
Solution. The sequence  satisfies the recurrence relation (R2) and  , relation that we 
use to prove our statement, by mathematical induction, with respect to  . For   we 
have in plane   points (a triangle)  and we colour the sides with one colour (the triangle 
is monochromatic). Assume the statement true for   and prove it for  . We fix one of 
the given points  . It is joined with the other   points by segments of  colours.  

Since  

 
it follows that from the   segments, at least  have the same colour  . We have to 
analyze two situations: 
1. If one of the segm ents that join two of  the   points, for exam ple  has the colour 

  then the triangle  has the sides of the same colour  . 
2. If none of these segm ents is of colour  , we keep only these   points, which for m a 
set   in whi ch each segment that joins two poi nts is colou red with one of the colours 

  and so the problem is reduced to the induction hypothesis.  
One can notice that the sequence (b_n)_n increases very fast and that it is dete rmined 

in the problem  only due to the argum ent (that we m ade).In a natural way, the  following 
equivalent problems appear: 
 
Open problem 2.2. Is the number   the smallest number with the property that in each  -
colours colouring of the segments that join the points of the set   with  , at least a 
monochromatic triangle is formed?  
 
Open problem 2.3. Which is the maxim um number of poi nts   that can be considered in 
plane (each three non-collinear) for which there ex ists a colouring of the segm ents between 
them, with   colours, such that no monochromatic triangle is formed? 

We believe that the problem s 2.2 and 2.3  will s tay (as m any problems of 
combinatorial geometry) open for a long time. 
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From the general case we have the evaluations 
 

The first inequality is obtained by constructing a graph with   vertices, inductively, 
which does not contain one -colour triangles. For   we take 2 point that are joined by a 
segment of colour  .  F or   we con sider two groups, each of  points, joined in each 
group by segments of the colours  such that no monochr omatic triangles are 
formed. The segments that join the vertices from two graphs are all co loured with the colour 

 .  The second inequality follows from problem 2.1, since  , so  . 
For the case   it is obvious that  . 
For the case   we have   (the sides of the pentagon are coloured with 

the colour   and the diagonals with colour  ). 
For the case   we will s how, using an extr emely ingenious nonelementary and 

difficult construction that  . 
More precisely, we will show that the di agonals and the sides of a regular polygon 

with 16 vertices can be coloured with three colours such that no monochromatic triangle is 
formed. Consider a set   with 5 elem ents (the vertices of a regula r 
pentagon) and  the set of subsets of V which contain 0, 2 or 4 elements. We 
have , where  (the 
sides)  

 (the diago nals). The set  has 
 elements, and the pair  is a subgroup of the group , where the 

operation  is th e symmetric difference  . T he essential 
properties (for us) of the group  are: 

1.   
2.   
3.  

from which follow: 
   
   
  . 
We consider now a bijective function from  the set of the vertices of the polygon with 

16 vertices to ,   and we colour each segm ent , 
 with the colour   like this: 

 
 
 

For an arbitrary triangle  , if   then from the relations 
1, 2, 3, , ,  it f ollows   so the  triangle  is not a m onochromatic 
triangle. 
 
Remark 2.4. The problem s solved in paragraph 2 are known in combinatorics and graph 
theory as Ramsey type problems. If   are positive integers and   then there 
exists minimal positive integer   with the property such that for every 
colouring with   colours   of the edges of com plete graph  , there exists 

  and a complete subgraph with   vertices and all edges of  colour. 
  is called Ramsey number of parameters  . In a problem given 

to OIM - Moscow 1976, the assertion is  . The problem  2.1 gives the next 
evaluation  , and in the last problem it was proved that 

 . In colouring problem s, with two colours, one denotes with   
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the minimum number of vertices of a com plete graph with the edg es coloured with two  
colours   and  , and for every colouring there exists a complete subgraph with   vertices 
and all edges of colour   or a complete subgraph with   vertices and all edges of colour . 

 
3. THE EQUATION   ON PARTITIONS OF A SET 
 

At the XX-th O.I.M. edition, Bucharest 1978, the following problem was given [2, 5]: 
At a congress are participating 1978 m athematicians from 6 countries, registered on a 

list from 1 to 1978. Prove that there exist three of the order numbers   
of some mathematicians from the same country, such that  . 

Following the reasoning m ade in the solution of this problem, we can for mulate the 
following generalization: 
 
Problem 3.1. The natural numbers from 1 to 

 

are partitioned in  sets. Show that the equation  has a solution in at least one of the 
sets of the partition. 
Solution. From the rec urrency relationship (R3), since , it follows th at at leas t 

  num bers are in the same set  of the partition. Let them  be 
 . W e consider the differences 

 . If one of these num bers, for exam ple  , is 
form   then we denote  ,   and    with  . If 
the  differences are from   then at least 1 are from the same set .  

Let them be   and we consider the differences 
 . W e notice that the d ifferences are of the for m 

 . If one of these is in A_1 we have a solution of 
the equation  in  , and if one of the differences is in   we have a solution in the 
set  . If not, we remain with  differences distributed in  sets and we continue the 
induction. 

 
Remark. For   we get  ,  ,  ,   and 

 . 
We can formulate problems similar to 2.2 and 2.3. 

 
Open problem 3.2. Which is the m inimum number   such that any partition of  the set 

 in   sets has the prope rty that the equation   has a solu tion in one of 
the sets of the partition? 
 
Open problem 3.3. Which is the maximum number   with the  property that the se t 

 can be partitioned in   sets   such that, if  , then 
 ,  ? 

It can be proved that  ,  ,   and  ,  , 
 , and for the general case, the problems remain open. 
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4. THE SOLVING OF THE EQUATION   WITH MONOCHROMATIC 
TRIANGLES 
 

Although problems 2.1 and 3.1 seem  essentially different, the connection between the 
numbers   and  n,   suggests that between the two of them might exist a deeper 
connection, which in fact shows that the two problems 2.1 and 3.1 and equivalent. 
 
Definition 4.1. We say that the natural num ber   has the property   if for each colou ring 
of the sides of a co mplete graph with  vertices, using segments of   colours, at least a on e 
monochromatic triangle is formed. 
 
Definition 4.2.  We say that the natural number   has the property   if for every partition 
of the set of  natural numbers  in   sets, th ere exist the numbers   in the  
same set such that  . 
 
Theorem 4.3.  The number   has the property   if and only if the number  
has the property  .  
Proof. If   has the property   then  we consid er the g raph with ve rtices 

  where   is the center of half a circle and the points   are 
situated on the half-circle; graph  with  vertices. If   has the property   and 

  is an arb itrary partition of the set  then we c olour the 
segment  with the colour  , where   is defined by  ,  . 

Let us notice that the triangle   is monochrom atic if and only if the numbers 
 ,   and    are in the sam e set   of the partition. Denoting 

 ,    and   we get   (solution of the equation in the set 
 ). 

 
Remark 4.4. Between the num bers   from the open problem  2.3 and   from the open 
problem 3.2, there exists the relation  .  The previous numbers are called Schu r 
numbers (for the relation with Ramsey num bers sees [1] and [4]). Since for every partition of 
the set of  positive integers in a f inite number of subsets there exis t a subset in which th e 
equation   has a solution, we say that   is a normal equation (I. Schur). 
 
5. PERMUTATION WITHOUT FIXED POINTS 
 
An example of application of inclusion and excl usion principle is the problem of finding the 
number of permutations of the set \{1,2,\ldots ,n\} without fixed points. The result obtained is 
related to the series  

 

Denoting by   the set of permutations having   as a fixed point,  , then the set of all 

permutations having at least a fixed point is . We have: 

 

and 
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Subtracting from the number of  all permutations the number of permutations with at 
least a fixed point we get the number   of all permutations without fixed points: 

 

 

Remark that the probability of choosing a permutation without fixed points is  

 

and . 
 
Remark. For the sequence  the following relations hold: 
1.   
2.  . 
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