
Journal of Science and Arts                                                                   Year 11, No. 1(14), pp. 21-30, 2011 

 
Corresponding author: dfanache@gmail.com 

ORIGINAL PAPER

A PARALLEL SOLUTION OF TRIDIAGONAL LINEAR SYSTEMS BY 
CONTINUED FRACTIONS 

DUMITRU FANACHE 

Valahia University of Targoviste, Faculty of Science and Arts, 130024, Targoviste, Romania 
 

Abstract. In paper it is report the LU decomposition of tridiagonal matrix to evaluate 
continued fractions. Application of parallel suffix while applying  parallel prefix products 
leads us to an optimal algorithm for LU decomposition that runs in  nO log  parallel time with 
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 processors, where n  is the size of the tridiagonal matrix. 
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1. INTRODUCTION  
 

Tridiagonal systems of equations arise frequently in the resolving of partial differential 
equations are given for the various solutions on parallel architectures. As is known, for 
example, Black Scholes equation is used to calculate the value of an option. In many cases, 
for example, a European-type option, this equation gives us the exact solution, but for other, 
more complex, it is necessary to apply numerical methods to obtain an approximate solution 
and application leads us precisely to resolve such particular linear systems [4].  

We present an algorithm for calculating the first convergents of a general  continued 
fraction using this opportunity for his representation with a product of the  matrices  type   
mentioned in [1] and  a parallel prefix similar to that given in [2, 3] for effectively resolve 
these dot-matrix products. 

n
22

LU decomposition algorithm is one of the most efficient existing sequential algorithms 
for the solution of linear systems with nonsymmetric tridiagonal matrix. To identify parallel 
opportunities of LU decomposition, we determine the convenient recurrence relations between 
elements of decomposition matrices, so that through them to achieve in fact a method of 
calculating the same as that conducted to the convergents evaluation of continuous fractions. 

It operates so that the product of a matrix operation is associative, so perfect 
parallelization. 

 
2. THE RELATIONSHIP BETWEEN LU DECOMPOSITION AND CONTINUED 
FRACTIONS 
 

To consider linear system under a more general form as follows: 
 
                                                                     dAx                                                                  (1) 
 

where  is a tridiagonal  matrix of order  by form (2), A n  Tnxxxx ,,, 21   is unknowns 

vector  is  free terms vector, both size n :  T
nddd ,,, 21  d 



A parallel solution of tridiagonal linear …                                                                                  Dumitru Fanache                                22 

                                                                                            (2) 































nn

nnn

ba

cba

cba

cba

cb

A

0000

00

00

00

000

111

333

222

11






where  şi . 01 a 0nc

In the  factorization, matrix  is decomposed into a product of two bidiagonal 
matrices  and U . So , where: 
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For example, in (1), matrix  and respectively free terms vector   are:  A d
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find the vector solution  .  algorithm for to solve system (1) 
consists in determining the vector 

 Tx 11111111 LU
y  from system dLy   and then solving the system 

. yUx 
More precisely, this algorithm for solving system (1) consists of the following steps: 
 

Step I. Calculate the  decomposition of the matrix   as follows: LU A
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11
f(1)=b(1); 
for i=2:n 
    e(i)=a(i)/f(i-1); 
    f(i)=b(i)-e(i)*c(i-1); 
end 

 
Step II. Determines y from system  dLy    using: 
 

niyedy

dy

iiii 


 2,* 1

11  
y(1)=d(1); 
for i=2:n 
   y(i)=d(i)-e(i)*y(i-1); 
end 

 
 
 
Step   III. Determines   x by solving system yUx  using: 
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 infxcyx

fyx

iiiii

nnn  
x(n)=y(n)/f(n); 
for i=n-1:-1:1 
   x(i)=(y(i)-c(i)*x(i+1))/f(i); 
end 
[L U]=lu(A); 

 
Let's consider first the parallelization decomposition part of the  algorithm for 

solving the system (1), ie Step I above. Once the diagonal values  of U  have 

been calculated,  can then be obtained in one parallel step with  processors. 

We will focus first on determining  values. Let 

LU LU

nf,
n

ff ,, 21

1neee ,,, 32 

if

                                        1 ini b ,                  for ni 1                                           (5) 

and  
                                        12   inini ca ,      for ni 2                                          (6)  

 
According to (5) and (6),  satisfy the non-linear recurrence relation  if
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f(1)=alfa(n); 
for i=2:n 
 f(i)=alfa(n-i+1)+beta(n-i+2)/f(i-1); 
end 

 
(7)

 
Thus, the system given by  (4), we obtain the results in Table 1. 

 
Table 1.  Elements of matrices  respectively U  after decomposition of the matrix given in (4) L

 
 2 2 2 2 2 2 2 2 
 1 -1 -1 -1 -1 -1 -1 -1 
ei 0 -0.50000 -0.6667 -0.7500 -0.8000 -0.8333 -0.8571 -0.8750 
fi 2.0000 1.5000 1.3333 1.2500 1.2000 1.1667 1.1429 1.1250 

 
Determining matrices  and U  involves determining , respectively , as matrix 

factorization given by   (4) is: 

L ie if
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respectively 
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It follows that if the general case of system given by (1) gets extended continued 

fraction nifi ,1,   by form: 
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Therefore, we aim to find a possibility of parallel evaluation continued fractions 

nifi ,1,   given by (8).        

 
3. THE RELATIONSHIP BETWEEN CONTINUED FRACTIONS AND PARALLEL 
PREFIX/ SUFFIX   ALGORITHMS   
 

Let  a sequence  with elements of  na 1  T  type  and a binary associative operation 

, elements  with TTT  : Pr 1 n     nkakPr i  11
k
i   are called   prefixes of  

 sequence and elements  na 1  nSuf 1  with     nk  1ak in
k
i  11Suf  are called 

suffixes  of same sequence.  To consider the reduced continued fraction of n  order:  
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for any . Under the matrix formulation given by Milne-Thomson [1], relation (9) can be 

written as: 

n
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Next we define: 
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ithw  11  , with  (11), we can write (10) more concise, so: 

                                                                                                       (12) 

 
Using Matlab sequence below, we determine the  vector, identical with the 

ecto

m

for i=1:n 
 
lfa(k) 1; beta(k) 0]; 

1 0]'; 
x(2); 

 

Therefore all convergents (reduceds)
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atrix ([2]) according to relations (10). 
 

  for k=1:i
if(k==1) x=[a
else 

alfa(k) 1;beta(k) 0];   y=[
  x=x*y; 
end 
end 
x=x*[
  fc(i)=x(1)/
end 
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 for ni ,,2,1   of general continued fraction 
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processors and requires  parallel time.  Such the prefixes in (13) 

calculated continued fractions    are concerned.  
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in the wrong direction as far as if

Further, we can show the products of suffix [2]: 
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We consider also continued fraction defined in (9): 
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For system given by (4) obtain the values in Table 2, the vectors n,,2   

Table 2. Evaluation reports  by   suffix algorithm 
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Using Matlab sequence below to determine the  vector for system  given by (4), 

identic

fs(1)=alfa(n); 

beta(n) 0]; 

 sf

, tal with the f  vector, which argues the result of [1] hat items can be calculated with a 
suffix  product of matrices according relationship (15) and (18 ). 
 

for i=2:n 
n) 1;   x=[alfa(

    for k=2:1:i-1 
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      y=[alfa(n-k+1) 1; beta(n-k+1) 0]; 

]'; 

 
Assume that continued fraction (9) for  

      x=y*x; 
    end 
 x=x*[1 0
 fs(i)=alfa(n-i+1)+x(2)/x(1); 
end 
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We have 

Thus we get 
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From first of columns of matrices in (22) we  obtain:  
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4
EXPERIMENTAL RESULTS  
 
  
matrix A  of system (1) through continued fractions calculation, we deduce: 
Input: A trydiagonal matrix by n order from system (1)  

LU

Output: L  and U matrices of the decomposition LU of A  matrix  
tStep I. Le  :f   and  ini b 11 b   for ni 1 .  

For n  computation i 2 inini ca  *1  
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Step  II.  ni 2  and com  suffix products   

Step III. For ni 2  computation  
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onvenieted using a c nt modification of the parallel prefix algorithm in  nO log  

using 



 n

O  processors. Therefore the total time required LU parallel algor



 nlog

continued fractions is  using 

ithm by 

 nO log 







n

n
O

log
� 

sizes of near sys   equations (1), implementation of this 
algorith

For different  the li tem
m on a parallel network processors, leads us to the results in Table 3, where time is 

expressed in ticks  and metrics are: ;/ ps TTS  pSE / ; pTpC  ; so TCT   

 
Table 3. Evolution of several metrics to solve system (1) by LU decomposition 

n Ts p

eed-up iciency allel cost 
o s

 
 T  S E C T  = C -T  

Sp Eff Par Overhead 
8 735  605 1,21 20,17% 3630 2895 
16   1465 1053 1,39 23,16% 6318 4853 
32 2883 1839 1,57 26,17% 11034 8151 
64 5693 3341 1,70 28,33% 20046 14353 
128  11287 6239 1,81 30,17 37434 26147 

 
In e n h i sing s he pr illustrated in Fig. 1 and the 

se of p
creas  efficie cy wit ncrea ize of t oblem is 

u rocessors is given in Fig. 2. 
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Fig. 1. Algorithm efficiency increases with the size problem. 
 

 
 

Fig. 2. How to use the processor to solve the system (1). 
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