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Abstract. In this paper we present the generalizations of the Ptolemy’s theorems, and
after then we present some interesting applications.
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Theorem 1. (M. Bencze, 1984). If 4 4,...4, is a convex polygon inscripted into a circle, then
the following identity is valid:

AZ An _ AZ A3 + A3 A4 + An —1 An

= ot
AIAZ 'AlAn AIAZ 'A1A3 A1A3 'A1A4 AlAn—l 'AlAn

Proof. Let C (O, R) be the circle which we have the 4,4,...4, convex polygon inscribed in.
Applying the T(4,, t) (##0) inversion, the C(O, R) circle, which we have the A ; point picked
out of, transform in a straight line ( d) which is perpendicular to 4;0. With this inversion we
get By = T(Ay) (k =2, 3, ..., n) points. These points B;, B3, ..., B, are on the (d) line in order
of their indexes. According to the property of inversion we have the following equalities:

An -1 An

BB - 4,4, 3% B, B, =|t|~—
A1A3 'A1A4 AlAn—l 'AlAn

B PTG e B

Y y A A,

Knowing that B,B, = B,B,+ BB, +...+ BB, and substituting the relation written above, we

F

got the result of the theorem.
Application 1.1. If ABCD is a convex and concyclic quadrilateral, then
AC-BD = AB-CD+ BC-DA

Proof. In Theorem 1 we take n=4. This is the classical first Theorem of Ptolemy. Therefore
Theorem 1 is a generalization of Ptolemy’s first Theorem.

Application 1.2. If ABCDEF is a convex and concyclic hexagon, then
AD-BE-CF = AB-ED-CF + BC-EF -AD+CD-FA-BE + AB-CD-EF + BC-DE-FA
Proof. In theorem 1 we take n=6 etc.

Application 1.3. Let 4,4,...4, be a regular polygon inscripted into a circle. On this circle we
take the point M € 4 4, , then we have the following identity:
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1 1 1 1
= + +...+
MA -MA, MA,-M4, MA,-MA, MA, - MA,
Proof. We use the Theorem 1 for the concyclic polygon B;B;...B,B,+;, where B;=M, By=A
(k = ], 2, veey I’l) andBn+1=A1.

Application 1.4. If z, eC (k=1,2, .., n) z #z; (i#j), then |z|=|z|=..=|z,| ifand
only if
|Zn _Zz| _ |Z3_Zz| + |Z4_Z3| - Zy — 2y
|Zz _Zl|' Zy _Zl| |Zz _Z1|’|Z3 _Zl| |Z3 _Zl|'|Z4 _Zl| Zp _Zl|' Z, _Zl|

Proof. Let be A(z)(k = 1, 2, ., n), then 44, =|z;-z|(i.je{l, 2, ... n}, i# ) and the

result follows from Theorem 1.

Application 1.5.If x, e R (k=1, 2, ..., n) and x, —x; & {k;r/k EZ} , then

‘sin(xn - X, )‘ ~ ‘sin(x3 - X, )‘ ‘sin(x4 —x3)‘ ‘sin(xn -X, )‘

+

‘sin()c2 —x,)sin(x, —x, )‘ - ‘sin()c2 —x,)sin(x; —x, )‘ ‘sin(x3 —x, )sin(x, - x, )‘ ‘sin(xn_l —x, )sin(x, - x, )‘
Proof. In Application 1.4 we take z, =cos2x, +isin2x, (k=1, 2, .., n).

Theorem 2. (A generalization of Ptolemy’s inequality). If 4,4,...4, is a convex polygon,
then
AZAn < A2A3 + A3A4 4.+ An—lAn
A1A2 'AlAn AlAZ 'A1A3 A1A3 'A1A4 AlAn—l 'AlAn

Proof. We suppose that the convex polygon 4, 4,...4, is not cyclic. Let C (O, R) be the
circle which we have the triang le 4 4,4, inscribed in. Applyingthe  T(4,,¢) (1#0)

inversion the circle, which we have the A; point picked out, transform 1in a straight line (d)
which is perpendicular to4,0. With thisinver sion we getthe B, =T(4,)

(k=2, 3, ..., n) points. All of these points B,, B, ..., B, arenotonthe (d) line, but

B,, B,, ..., B, is a closen broken line, therefore

BB, <B,B,+B,B,+..+B B,
and from this follows the results. See the proof of Theorem 1.
Application 2.1. If ABCD is a convex quadrilateral, then

AC-BD<AB-CD+BC-DA.

This is the “classical” Ptolemy’s inequality.
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Application 2.2. If ABCDEF is a convex hexagon, then

AD-BE-CF < AB-ED-CF+BC-EF -AD+CD-FA-BE+ AB-CD-EF + BC-DE-FA

Application 2.3.1f z, e C (k=1, 2, .., n) z,#z, (i, j€{l, 2, .., n}, i # j), then

|Za_22|

| |
2472
+

z, _Z1| |Z2 —zl|-|z3 —zl| |z3 —zl|~|z4—zl|

-1

+...+

Zn_Zl|

|ZZ - Zn—l

Theorem 3. (A generalization of second Theorem of Ptolemy). If 4,4,...4, is a concyclic and
convex polygon, then

4,4 i 1 EAA Z AA EAA AA
Ad AA SAL AL AA = A4 AAZAAZ 1L4 AL AL S AL

Proof. We use the notations and the inversion from proof of Theorem 1.
In triangle 4B, B, for the point B, € B,B, we apply the Stewart theorem, so we obtain:

AlBlf 'Ban = AlAz2 'Ban + AlBj 'Bsz _Ban 'Bsz 'Ban >

but
g
172 141142
g
1~k AlAk
45 <
AA,
|t|AA A A,
B,B, =|i| 44,
AA,-AA,
BB, =|i] A4,
A4, -AA,
therefore
AA, . 1 1 .AkAn 1 .AzAk_ 4,4, .AzAk~AkAn

= +
AIAZ 'AlAn AlAk2 A1A22 'AlAn AlAk AlAz'AlAnz AlAk A1A22 'AlAj AlAlf

forall k e {3, 4, ..., n} and finally after addition we obtain:

4,4 i 1 EAA 1 Z AA EAA AA
A Ad EAL AL AA S AA AA AL AA AL AL A A

14th k=3 k=3 k=3
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Application 3.1. If ABCD is a convex and concyclic quadrilateral, then

AC AB-AD+CB-CD
BD BA-BC+DA-DC’

Proof. In Theorem 3 we take n=4. This is the classical second Theorem of Ptolemy.

Application 3.2.1f z, e C (k=1, 2, .., n) z,#z, (i, j€{l, 2, .., n}, i # j), then

|Zl :|Zz|: =|%n
if and only if
— n—1
z, zz| 1 B
> =
ZZ_ZI . Zn _Zl k=3 Zk _Zl|
n—1 _ n—1 _ _ n—1 _ . _
_ 1 Z z, Zk|+ 1 |Zk Zz| z, Zz| |Zk Zz| z, Zk|
- 2 2 2 2
|22 —Zl| -|Zn —Zl| k=3 |2 T4 |22 —Zl| ‘|z, —Zl| k=3 |2 T4 |22 z| -z, —Zl| k=3 |Zk -z

Proof. See the proof of the Application 1.4.

Application 3.3.If x, e R (k=1, 2, ..., n) and x,—x, ¢ {kz/k € Z} , then

‘sin(xn - X, )‘ n-l

1 ~ 1 | sin(x, —x,) ‘
<sin®(x, —x) sin’ (x, —xl)‘sin(x" —xl)‘ =|sin® (x, —xl)‘

‘sin(x2 —x,)sin(x, —x, )‘

| | sin (x, _xz)‘ ‘sin(xn - X, )‘ el

sin(x, —x, )sin(x, —x, )‘

’ ‘sin(x2 - X )‘ sin® (x, —x,) £ |sin® (x, — x, )‘ sin’ (x, —x, )sin® (x, —x,) &= sin® (x, —x;)
Proof. In Application 3.2. we take z, =cos2x, +isin2x, (k=1, 2, .., n).
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