ORIGINAL PAPER

GENERALIZATION OF PTOLEMY'S THEOREMS

MIHALY BENCZE

National College Aprily Lajos, 500026, Brasov, Romania

Abstract. In this paper we present the generalizations of the Ptolemy's theorems, and after then we present some interesting applications.

Keywords and phrases: Ptolemy's theorems, geometrical inequalities.

2010 Mathematical Subject Classification. 26D15, 51M04

Theorem 1. (M. Bencze, 1984). If $A_1A_2...A_n$ is a convex polygon inscripted into a circle, then the following identity is valid:

$$\frac{A_2 A_n}{A_1 A_2 \cdot A_1 A_n} = \frac{A_2 A_3}{A_1 A_2 \cdot A_1 A_3} + \frac{A_3 A_4}{A_1 A_3 \cdot A_1 A_4} + \dots + \frac{A_{n-1} A_n}{A_1 A_{n-1} \cdot A_1 A_n}$$

Proof. Let C(O, R) be the circle which we have the $A_1A_2...A_n$ convex polygon inscribed in. Applying the $T(A_1, t)$ $(t \neq 0)$ inversion, the C(O, R) circle, which we have the A_1 point picked out of, transform in a straight line (d) which is perpendicular to A_1O . With this inversion we get $B_k = T(A_k)$ (k = 2, 3, ..., n) points. These points B_2 , B_3 , ..., B_n are on the (d) line in order of their indexes. According to the property of inversion we have the following equalities:

$$B_2B_n = \left|t\right| \cdot \frac{A_2A_n}{A_1A_2 \cdot A_1A_n}, \ B_2B_3 = \left|t\right| \cdot \frac{A_2A_3}{A_1A_2 \cdot A_1A_3}, \ B_3B_4 = \left|t\right| \cdot \frac{A_3A_4}{A_1A_3 \cdot A_1A_4}, \ \dots, B_{n-1}B_n = \left|t\right| \cdot \frac{A_{n-1}A_n}{A_1A_{n-1} \cdot A_1A_n}$$

Knowing that $B_2B_n = B_2B_3 + B_3B_4 + ... + B_{n-1}B_n$ and substituting the relation written above, we got the result of the theorem.

Application 1.1. If ABCD is a convex and concyclic quadrilateral, then

$$AC \cdot BD = AB \cdot CD + BC \cdot DA$$

Proof. In Theorem 1 we take n=4. This is the *classical* first Theorem of Ptolemy. Therefore Theorem 1 is a generalization of Ptolemy's first Theorem.

Application 1.2. If ABCDEF is a convex and concyclic hexagon, then

$$AD \cdot BE \cdot CF = AB \cdot ED \cdot CF + BC \cdot EF \cdot AD + CD \cdot FA \cdot BE + AB \cdot CD \cdot EF + BC \cdot DE \cdot FA$$

Proof. In theorem 1 we take n=6 etc.

Application 1.3. Let $A_1A_2...A_n$ be a regular polygon inscripted into a circle. On this circle we take the point $M \in \widehat{A_1A_2}$, then we have the following identity:

$$\frac{1}{MA_1 \cdot MA_2} = \frac{1}{MA_2 \cdot MA_3} + \frac{1}{MA_3 \cdot MA_4} + \dots + \frac{1}{MA_n \cdot MA_1}$$

Proof. We use the Theorem 1 for the concyclic polygon $B_1B_2...B_nB_{n+1}$, where $B_1=M$, $B_k=A_k$ (k=1, 2, ..., n) and $B_{n+1}=A_1$.

Application 1.4. If $z_k \in \mathbb{C}$ (k = 1, 2, ..., n) $z_i \neq z_j$ $(i \neq j)$, then $|z_1| = |z_2| = ... = |z_n|$ if and only if

$$\frac{\left|z_{n}-z_{2}\right|}{\left|z_{2}-z_{1}\right|\cdot\left|z_{n}-z_{1}\right|} = \frac{\left|z_{3}-z_{2}\right|}{\left|z_{2}-z_{1}\right|\cdot\left|z_{3}-z_{1}\right|} + \frac{\left|z_{4}-z_{3}\right|}{\left|z_{3}-z_{1}\right|\cdot\left|z_{4}-z_{1}\right|} + \ldots + \frac{\left|z_{n}-z_{n-1}\right|}{\left|z_{n-1}-z_{1}\right|\cdot\left|z_{n}-z_{1}\right|}$$

Proof. Let be $A_k(z_k)$ (k = 1, 2, ..., n), then $A_iA_j = |z_j - z_i| (i, j \in \{1, 2, ..., n\}, i \neq j)$ and the result follows from Theorem 1.

Application 1.5. If $x_k \in \mathbb{R}$ (k = 1, 2, ..., n) and $x_i - x_j \notin \{k\pi/k \in \mathbb{Z}\}$, then

$$\frac{\left|\sin\left(x_{n}-x_{2}\right)\right|}{\left|\sin\left(x_{2}-x_{1}\right)\sin\left(x_{n}-x_{1}\right)\right|} = \frac{\left|\sin\left(x_{3}-x_{2}\right)\right|}{\left|\sin\left(x_{2}-x_{1}\right)\sin\left(x_{3}-x_{1}\right)\right|} + \frac{\left|\sin\left(x_{4}-x_{3}\right)\right|}{\left|\sin\left(x_{3}-x_{1}\right)\sin\left(x_{4}-x_{1}\right)\right|} + \dots + \frac{\left|\sin\left(x_{n}-x_{n-1}\right)\right|}{\left|\sin\left(x_{n-1}-x_{1}\right)\sin\left(x_{n}-x_{1}\right)\right|}$$

Proof. In Application 1.4 we take $z_k = \cos 2x_k + i \sin 2x_k$ (k = 1, 2, ..., n).

Theorem 2. (A generalization of Ptolemy's inequality). If $A_1A_2...A_n$ is a convex polygon, then

$$\frac{A_2A_n}{A_1A_2\cdot A_1A_n} \leq \frac{A_2A_3}{A_1A_2\cdot A_1A_3} + \frac{A_3A_4}{A_1A_3\cdot A_1A_4} + \ldots + \frac{A_{n-1}A_n}{A_1A_{n-1}\cdot A_1A_n}$$

Proof. We suppose that the convex polygon $A_1A_2...A_n$ is not cyclic. Let C(O, R) be the circle which we have the triang le $A_1A_2A_n$ inscribed in Applying the $T(A_1,t)$ $(t \neq 0)$ inversion the circle, which we have the A_1 point picked out, transform in a straight line (d) which is perpendicular to A_1O . With this inversion we get the $B_k = T(A_k)$ (k = 2, 3, ..., n) points. All of these points B_2 , B_3 , ..., B_n are not on the (d) line, but B_2 , B_3 , ..., B_n is a closen broken line, therefore

$$B_2 B_n \le B_2 B_3 + B_3 B_4 + \ldots + B_{n-1} B_n$$

and from this follows the results. See the proof of Theorem 1.

Application 2.1. If ABCD is a convex quadrilateral, then

$$AC \cdot BD \le AB \cdot CD + BC \cdot DA$$
.

This is the "classical" Ptolemy's inequality.

www.josa.ro Mathematics Section

Application 2.2. If ABCDEF is a convex hexagon, then

$$AD \cdot BE \cdot CF \le AB \cdot ED \cdot CF + BC \cdot EF \cdot AD + CD \cdot FA \cdot BE + AB \cdot CD \cdot EF + BC \cdot DE \cdot FA$$

Application 2.3. If $z_k \in \mathbb{C}$ (k = 1, 2, ..., n) $z_i \neq z_j$ $(i, j \in \{1, 2, ..., n\}, i \neq j)$, then

$$\frac{\left|z_{n}-z_{2}\right|}{\left|z_{2}-z_{1}\right|\cdot\left|z_{n}-z_{1}\right|}\leq\frac{\left|z_{3}-z_{2}\right|}{\left|z_{2}-z_{1}\right|\cdot\left|z_{3}-z_{1}\right|}+\frac{\left|z_{4}-z_{3}\right|}{\left|z_{3}-z_{1}\right|\cdot\left|z_{4}-z_{1}\right|}+\ldots+\frac{\left|z_{n}-z_{n-1}\right|}{\left|z_{n-1}-z_{1}\right|\cdot\left|z_{n}-z_{1}\right|}$$

Theorem 3. (A generalization of second Theorem of Ptolemy). If $A_1 A_2 ... A_n$ is a concyclic and convex polygon, then

$$\frac{A_2A_n}{A_1A_2 \cdot A_1A_n} \cdot \sum_{k=3}^{n-1} \frac{1}{A_1A_k^2} = \frac{1}{A_1A_k^2 \cdot A_1A_n} \cdot \sum_{k=3}^{n-1} \frac{A_kA_n}{A_1A_k} + \frac{1}{A_1A_2 \cdot A_1A_n^2} \cdot \sum_{k=3}^{n-1} \frac{A_2A_k}{A_1A_k} - \frac{A_2A_n}{A_1A_k^2 \cdot A_1A_n^2} \cdot \sum_{k=3}^{n-1} \frac{A_2A_k \cdot A_kA_n}{A_1A_k^2}$$

Proof. We use the notations and the inversion from proof of Theorem 1. In triangle $A_1B_2B_n$ for the point $B_k \in B_2B_n$ we apply the Stewart theorem, so we obtain:

$$A_1B_k^2 \cdot B_2B_n = A_1A_2^2 \cdot B_kB_n + A_1B_n^2 \cdot B_2B_k - B_2B_n \cdot B_2B_k \cdot B_kB_n$$

but

$$A_{1}B_{2} = \frac{|t|}{A_{1}A_{2}}$$

$$A_{1}B_{k} = \frac{|t|}{A_{1}A_{k}}$$

$$A_{1}B_{n} = \frac{|t|}{A_{1}A_{n}}$$

$$B_{2}B_{k} = |t| \frac{A_{2}A_{k}}{A_{1}A_{2} \cdot A_{1}A_{k}}$$

$$B_{2}B_{n} = |t| \frac{A_{2}A_{n}}{A_{1}A_{2} \cdot A_{1}A_{n}}$$

$$B_{k}B_{n} = |t| \frac{A_{k}A_{n}}{A_{1}A_{k} \cdot A_{n}A_{n}}$$

therefore

$$\frac{A_2A_n}{A_1A_2 \cdot A_1A_n} \cdot \frac{1}{A_1A_k^2} = \frac{1}{A_1A_2^2 \cdot A_1A_n} \cdot \frac{A_kA_n}{A_1A_k} + \frac{1}{A_1A_2 \cdot A_1A_n^2} \cdot \frac{A_2A_k}{A_1A_n} - \frac{A_2A_n}{A_1A_2^2 \cdot A_1A_n^2} \cdot \frac{A_2A_k \cdot A_kA_n}{A_1A_k^2}$$

for all $k \in \{3, 4, ..., n\}$ and finally after addition we obtain:

$$\frac{A_2A_n}{A_1A_2 \cdot A_1A_n} \cdot \sum_{k=3}^{n-1} \frac{1}{A_1A_k^2} = \frac{1}{A_1A_2^2 \cdot A_1A_n} \cdot \sum_{k=3}^{n-1} \frac{A_kA_n}{A_1A_k} + \frac{1}{A_1A_2 \cdot A_1A_n^2} \cdot \sum_{k=3}^{n-1} \frac{A_2A_k}{A_1A_k} - \frac{A_2A_n}{A_1A_2^2 \cdot A_1A_n^2} \cdot \sum_{k=3}^{n-1} \frac{A_2A_k \cdot A_kA_n}{A_1A_k^2} + \frac{1}{A_1A_2 \cdot A_1A_n^2} \cdot \sum_{k=3}^{n-1} \frac{A_2A_k}{A_1A_k} - \frac{A_2A_n}{A_1A_2^2 \cdot A_1A_n^2} \cdot \sum_{k=3}^{n-1} \frac{A_2A_k \cdot A_kA_n}{A_1A_k^2} + \frac{1}{A_1A_2^2 \cdot A_1A_n} \cdot \sum_{k=3}^{n-1} \frac{A_2A_k}{A_1A_k} - \frac{A_2A_n}{A_1A_2^2 \cdot A_1A_n^2} \cdot \sum_{k=3}^{n-1} \frac{A_2A_k}{A_1A_k^2} - \frac{A_2A_n}{A_1A_2^2 \cdot A_1A_n^2} \cdot \sum_{k=3}^{n-1} \frac{A_2A_k}{A_1A_2^2 \cdot A_1A_n^2} \cdot \sum_{k=3}^{n-1} \frac{A_2A_k}{A_1A_2^2 \cdot A_1A_1A_n^2} \cdot \sum_{k=3}^{n-1} \frac$$

ISSN: 1844 – 9581 Mathematics Section

Application 3.1. If ABCD is a convex and concyclic quadrilateral, then

$$\frac{AC}{BD} = \frac{AB \cdot AD + CB \cdot CD}{BA \cdot BC + DA \cdot DC}.$$

Proof. In Theorem 3 we take n=4. This is the *classical* second Theorem of Ptolemy.

Application 3.2. If
$$z_k \in \mathbb{C}$$
 $(k = 1, 2, ..., n)$ $z_i \neq z_j$ $(i, j \in \{1, 2, ..., n\}, i \neq j)$, then $|z_1| = |z_2| = ... = |z_n|$

if and only if

$$\begin{split} &\frac{\left|z_{n}-z_{2}\right|}{\left|z_{2}-z_{1}\right|\cdot\left|z_{n}-z_{1}\right|}\sum_{k=3}^{n-1}\frac{1}{\left|z_{k}-z_{1}\right|^{2}}=\\ &=\frac{1}{\left|z_{2}-z_{1}\right|^{2}\cdot\left|z_{n}-z_{1}\right|}\sum_{k=3}^{n-1}\frac{\left|z_{n}-z_{k}\right|}{\left|z_{k}-z_{1}\right|}+\frac{1}{\left|z_{2}-z_{1}\right|^{2}\cdot\left|z_{n}-z_{1}\right|}\sum_{k=3}^{n-1}\frac{\left|z_{k}-z_{2}\right|}{\left|z_{k}-z_{1}\right|}-\frac{\left|z_{n}-z_{2}\right|}{\left|z_{2}-z_{1}\right|^{2}\cdot\left|z_{n}-z_{1}\right|}\sum_{k=3}^{n-1}\frac{\left|z_{k}-z_{2}\right|\cdot\left|z_{n}-z_{k}\right|}{\left|z_{k}-z_{1}\right|^{2}} \end{split}$$

Proof. See the proof of the Application 1.4.

Application 3.3. If $x_k \in \mathbb{R}$ (k = 1, 2, ..., n) and $x_i - x_j \notin \{k\pi/k \in \mathbb{Z}\}$, then

$$\frac{\left|\sin(x_{n}-x_{2})\right|}{\left|\sin(x_{2}-x_{1})\sin(x_{n}-x_{1})\right|} \sum_{k=3}^{n-1} \frac{1}{\sin^{2}(x_{k}-x_{1})} = \frac{1}{\sin^{2}(x_{2}-x_{1})\left|\sin(x_{n}-x_{1})\right|} \sum_{k=3}^{n-1} \frac{\sin(x_{n}-x_{k})}{\sin^{2}(x_{k}-x_{1})} + \frac{1}{\left|\sin(x_{2}-x_{1})\right|\sin^{2}(x_{n}-x_{1})} \sum_{k=3}^{n-1} \frac{\sin(x_{k}-x_{2})}{\sin^{2}(x_{k}-x_{1})} - \frac{\left|\sin(x_{n}-x_{2})\right|}{\sin^{2}(x_{2}-x_{1})\sin^{2}(x_{n}-x_{1})} \sum_{k=3}^{n-1} \frac{\left|\sin(x_{k}-x_{2})\sin(x_{n}-x_{k})\right|}{\sin^{2}(x_{k}-x_{1})} + \frac{1}{\sin^{2}(x_{k}-x_{1})} = \frac{1}{\sin^{2}(x_{k}-x_{1})} \sum_{k=3}^{n-1} \frac{\left|\sin(x_{k}-x_{k})\sin(x_{k}-x_{k})\right|}{\sin^{2}(x_{k}-x_{1})} + \frac{1}{\sin^{2}(x_{k}-x_{1})} = \frac{1}{\sin^{2}(x_{k}-x_{1})} \sum_{k=3}^{n-1} \frac{\left|\sin(x_{k}-x_{k})\sin(x_{k}-x_{k})\right|}{\sin^{2}(x_{k}-x_{1})} + \frac{1}{\sin^{2}(x_{k}-x_{1})} = \frac{1}{\sin^{2}(x_{k}-x_{1}$$

Proof. In Application 3.2. we take $z_k = \cos 2x_k + i \sin 2x_k$ (k = 1, 2, ..., n).

REFERENCES

- [1] Bencze, M., *Inequalities* (manuscript), 1984.
- [2] Bencze, M., Octogon Mathematical Magazine, 2(1), 9, 1994.
- [3] Bencze, M., Gazeta Matematica de Perfectionare, 1-2, 48, 1985.
- [4] Titeica, Gh., *Probleme de geometrie*, Ed. Appelo, Craiova, 1992.
- [5] Nicolescu, L., Boskoff, V., *Probleme practice de geometrie*, Ed. Tehnica, Bucures ti, 1990.
- [6] Orban, B., *Matlap*, **1**, 1, Cluj Napoca, 2006.

Manuscript received: 13.11.2010 Accepted paper: 08.12.2010 Published online: 01.02.2011

www.josa.ro Mathematics Section