ORIGINAL PAPER

FINITENESS PROPERTIES FOR THE PATH COALGEBRA ASSOCIATED TO A POSET

GEORGIANA VELICU

Valahia University of Targoviste, Faculty of Science and Arts, 130024, Targoviste, Romania

Abstract. Let P be a partially ordered set (poset) locally finite and kQ the path coalgebra over a field k associated to P. In this paper we investigate finiteness properties of this coalgebra by using an injective morphism of coalgebras from incidence coalgebra kS of P to the path coalgebra kQ. We deduce that kQ is left semiperfect only if kS have the same property, and that kQ is cosemisimple when the order relation on P is the equality. Finally we characterize the coradical filtration of the path coalgebra.

Keywords: finiteness properties, coalgebra, poset, injective morphism, coradical filtration.

1. INTRODUCTION AND PRELIMINARIES

Let k be a field. The aim of this paper is to study finiteness conditions for a wellknown class of coalgebras, namely for path coalgebras associated to locally finite partially ordered sets. Path coalgebras provide a good framework for interpreting several combinatorial problems in terms of coalgebras.

Let (P, \leq) be a partially ordered set (poset for short) and locally finite, i.e. the interval $[x, y] = \{z \in P \mid x \leq z \leq y\}$ is finite for any $x \leq y$ from *P*.

In [6] is proved the fact that to any poset P we can associate an oriented quiver $Q = (Q_0, Q_1)$, where:

- $Q_0 = P$, i.e. the set of vertices of Q is P;
- and for any $x \le y$ from *P* let $\alpha : x \to y$ be the arrow from *x* to *y*, and if *x* is not comparable with *y* in *P* we don't have any arrow from *x* to *y*; we denote with Q_1 the set of all these arrows between all the vertices from Q_0 .

It is obvious that the quiver $Q = (Q_0, Q_1)$ has no oriented cycles.

Now we can construct a k – vector space, kQ, of base Q. This vector space becomes coalgebra over k with the following two linear applications:

- comultiplication:

$$\Delta_o: kQ \to kQ \otimes kQ$$

$$\Delta_{\mathcal{Q}}(p) = \sum_{p=p_1p_2} p_1 \otimes p_2 = s(p) \otimes p + \sum_{i=1}^{n-1} \alpha_1 \dots \alpha_i \otimes \alpha_{i+1} \dots \alpha_n + p \otimes t(p) ,$$

where $p = \alpha_1 \dots \alpha_n$ is a path in Q, and

 $\Delta_{Q}(e_{x}) = x \otimes x$, where e_{x} is the trivial path from x to x in Q, $x \in Q_{0}$

- counity:

$$\varepsilon_Q: kQ \to k$$

 $\varepsilon_{Q}(p) = 0$, where $p = \alpha_{1} \dots \alpha_{n}$ is a path in Q, and

 $\varepsilon_o(e_x) = 1$, where e_x is the trivial path from x to x in Q, $x \in Q_0$.

So we can identify the trivial path e_x from *x* to *x* with the vertex *x*. Also, if $S = \{[x, y] | x, y \in P, x \le y\}$ be the set of all intervals from *P* and

$$kS = \left\{ \sum_{i=1}^{n} a_{[x_i, y_i]}[x_i, y_i] / [x_i, y_i] \in S, a_{[x_i, y_i]} \in k, n \in \mathbb{N} \right\}$$

the k vector space of base S, we remind that kS becomes a k – coalgebra, called the incidence coalgebra of P, with the following two linear applications:

$$\Delta_{S}: kS \to kS \otimes kS , \Delta_{S}([x, y]) = \sum_{x \le z \le y} [x, z] \otimes [z, y] \text{ and}$$
$$\varepsilon_{S}: kS \to k , \varepsilon_{S}([x, y]) = \delta_{x, y},$$

where by $\delta_{x,y}$ we denote Kronecker's delta.

We also recall that if *C* is a coalgebra, then *C* is a left *C*, right *C* - bicomodule with coactions defined by the comultiplication, and this makes *C* a left C^* , right C^* - bimodule. Denote by $c^* \cdot c$ and $c \cdot c^*$ the left and the right actions of $c^* \in C^*$ on $c \in C$.

In [6] it is prooved an important result, precisely a relation between these two coalgebras.

Theorem 1.1. Let (P, \leq) a poset locally finite, $Q = (Q_0, Q_1, s, t)$ the quiver associated to *P*, $(kQ, \Delta_Q, \varepsilon_Q)$ the path coalgebra and $(kS, \Delta_S, \varepsilon_S)$ the incidence coalgebra of *P*. Then there is an injective morphism of *k* – coalgebras, $f : kS \to kQ$.

This morphism associate to any interval [x, y] from the base *S* of the incidence coalgebra *kS*, the sum of all paths from *Q* starting from *x* and arriving to *y*, i.e. $f([x, y]) = \sum_{\substack{p \text{ is a path} \\ from x \text{ to } y}} p$. It is obvious that the application f is an injective morphism of coalgebras.

Through this morphism we can consider that the coalgebra kS is a subcoalgebra of the path coalgebra kQ.

We consider some finiteness properties for coalgebras.

A coalgebra C is called right semiperfect if the category of right C - comodules has enough projectives.

Theorem 1.2. A coalgebra C is right semiperfect if the injective envelope of any left C – simple comodule is finite dimensional. Similarly, a coalgebra C is left semiperfect if the injective envelope of any right C – simple comodule is finite dimensional.

Proposition 1.3. If C is a right semiperfect coalgebra and A is subcoalgebra of C, then A is also right semiperfect.

A coalgebra *C* is right or left cosemisimple if $C = C_0$, where C_0 the coradical of *C*, i.e. the sum of all simple subcoalgebras of *C*.

In [3] we find the following results:

Theorem 1.4. If *P* is a poset locally finite, then the incidence coalgebra *kS* associated to *P* is left semiperfect if and only if for any element $x \in P$ the set $\{y \in P | x \le y\}$ is finite.

Observation 1.5. Similarly, coalgebra kS is right semiperfect if and only if the injective envelope of any left kS comodule is finite dimensional, means that for any $x \in P$ the set $\{y \in P \mid y \le x\}$ is finite.

Throughout this paper we work over a field k. For basic definitions and notations on coalgebras we refer to [1] and [5].

2. FINITENESS PROPERTIES FOR THE PATH COALGEBRA ASSOCIATED TO A POSET

Recall that for any oriented quiver $Q = (Q_0, Q_1)$, the path coalgebra kQ is the k – vector space generated by all paths from Q and the comultiplication and counit are:

$$\Delta(\alpha) = \sum_{\beta \gamma = \alpha} \beta \otimes \gamma$$
$$\varepsilon(\alpha) = \begin{cases} 0, & \text{if } |\alpha| > 0\\ 1, & \text{if } |\alpha| = 0 \end{cases},$$

where $\beta \gamma$ is the concatenation of β and γ , and $|\alpha|$ is the length of the path α , and

$$\varepsilon_{\varrho}(p) = \begin{cases} 0, if \ p \ is \ a \ notrivial \ path\\ 1, if \ p \ is \ a \ vertex. \end{cases}$$

In [4], for some vertex $s \in Q_0$ of the quiver Q is noted with $Q(s \rightarrow)$ and $Q(\rightarrow s)$ the set of all paths from Q which starts from s, respectively ends in s. We have the following result:

Georgiana Velicu

The path coalgebra kQ is left semiperfect if and only if for any vertex $s \in Q_0$, the set $Q(s \rightarrow)$ is finite. In the same way, the path coalgebra kQ is right semiperfect if and only if the set $Q(\rightarrow s)$ is finite.

Now, considering the path coalgebra associated to a locally finite poset we have:

Theorem 2.1. Let *P* be a poset locally finite. The following assertions are equivalent:

i) incidence coalgebra kS is left semiperfect;

ii) path coalgebra kQ is left semiperfect.

Proof. i) \Rightarrow ii) From theorem 1.4 we have that incidence coalgebra kS of P is left semiperfect if for any $x \in P$ the set $\{y \in P | x \le y\}$ is finite. Obviously results that the set $Q(x \rightarrow)$ of all paths starting from x is a finite one, so kQ is left semiperfect.

 $ii) \Rightarrow i$ From theorem 1 we have an injective morphism of k – coalgebras, $f:kS \rightarrow kQ$, such that the incidence coalgebra kS is a subcoalgebra of path coalgebra kQ. Because any subcoalgebra of a left semiperfect coalgebra is also left semiperfect, we have that kS is the same.

Lets now study when path coalgebra kQ is cosemisimple.

Theorem 2.2. Let *P* be a poset locally finite. The following assertions are equivalent:

i) incidence coalgebra *kS* is cosemisimple;

ii) path coalgebra kQ is cosemisimple.

iii) the order relation from *P* is equality.

Proof. In [2] it is proved i) \Leftrightarrow iii).

When the order relation from *P* is equality the two coalgebras *kS* and *kQ* coincide, so $iii) \Rightarrow ii$.

The implication $ii \Rightarrow i$ is true, because the coalgebra kQ being cosemisimple implies that kS is cosemisimple as a subcoalgebra of kQ.

3. CORADICAL FILTRATION FOR THE PATH COALGEBRA OF A POSET LOCALLY FINITE

The coradical C_0 have a very important role in the construction of a filtartion of a coalgebra C. We define recursively C_n such that: for anz pozitive integer $n \ge 1$, let

$$C_n = \Delta^{-1}(C \otimes C_{n-1} + C_0 \otimes C).$$

The properties of $\{C_n\}_{n\geq 1}$ are showed in the next theorem [3].

Theorem 3.1. For any pozitve integer $n \ge 0$, $\{C_n\}_{n\ge 1}$ is an ascendant chain of subcoalgebras of *C* such that:

1)
$$C_n \subseteq C_{n+1}$$
 and $C = \bigcup_{n \ge 0} C_n$;
2) $\Delta(C_n) \subseteq \sum_{i=0}^n C_i \otimes C_{n-i}$.

Any chain of subspaces of C which satisfie the conditions 1) and 2) from the theorem above we call it the coradical filtration of the coalgebra C.

If $x, y \in P$ and x < y, we saw that the interval [x, y] has lenght *n* if for any sequence $x = u_0 < u_1 < ... < u_m = y$ we have $m \le n$, and there exists such a sequence for m = n. We write length([x, y]) = n. We make a convention that length([x, x]) = 0 for any $x \in P$. Now we are able to describe the coradical filtration of the inicdence coalgebra kS of P.

Proposition 3.2. The (n+1) - term kS_n of the coradical filtration of kS is:

$$kS_n = \langle [x, y] / length([x, y]) \leq n \rangle$$
.

The proof is in [2].

Lets now find the coradical filtration for the path coalgebra kQ of a poset *P*. Consider $(kQ, \Delta_Q, \varepsilon_Q)$ the path coalgebra of the locally finite poset *P*.

For any positive integer $n \in \mathbb{N}$ denote by kQ_n the k – vector subspace of kQ generated by the set $\{p \in Q \mid |p| \le n\}$ of all paths from Q of maximum length n. In this way we obtain an ascendant chain of subcoalgebras $(kQ)_0 \subseteq (kQ)_1 \subseteq (kQ)_2 \subseteq ...$ of kQ.

Proposition 3.3. The chain $(kQ)_0 \subseteq (kQ)_1 \subseteq (kQ)_2 \subseteq ...$ is a coradical filtration for the path coalgebra kQ of the locally finite poset *P*.

Proof. We poove that the chain $(kQ)_0 \subseteq (kQ)_1 \subseteq (kQ)_2 \subseteq ...$ is a coradical filtration for kQ. So, for any path $p \in Q$ and any sub-paths p_1, p_2 of p we have $|p_1| + |p_2| \leq |p|$, so $\Delta_Q((kQ)_n) \subseteq \sum_{i=0}^n (kQ)_i \otimes (kQ)_{n-i}$. It is obvious that $kQ = \bigcup_{n\geq 0} kQ_n$ and the proof is done.

Corolarly 3.4. If *P* is a locally finite poset we have:

$$f(C_n) \subseteq kQ_n$$

where C_n , respectively kQ_n , is the *n*-th term of the coradical filtration of incidence coalgebra kS, respectively of path coalgebra kQ of *P*, and *f* is the morphism from the Theorem 1.1.

Georgiana Velicu

REFERENCES

- [1] Velicu, G., Journal of Science and Arts, 2(9), 218, 2008.
- [2] Abe, E., Hopf Algebras, Cambridge University Press, 1977.
- [3] Sweedler, M.E., Hopf Algebras, W.A. Benjamin Ed., New York, 1969.
- [4] Simson, D., Colloquium Mathematicum, 115, 259, 2009.
- [5] Năstăsescu, C., Dăscălescu, S., Raianu, Ş., *Hopf Algebras*. An Introduction, Monographs and Textbooks in Pure and Appl. Math., Marcel Dekker, 235, 2000.
- [6] Dăscălescu, S., Năstăsescu, C., Velicu, G., Revista Unión Matemática Argentina, 51(1), 19, 2010.

Manuscript received: 10.10.2010 Accepted paper: 17.12.2010 Published online: 01.02.2011