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Abstract. This paper studies different testing function spaces of Gelfand-Shilov type 

for the Banach space valued generalized Potential transform. The topological properties of 
these spaces are discussed. Different operators and their continuity is also discussed. The 
Analyticity theorem and Inversion theorem for Banach space valued distributional Potential 
Transform are also proved. 
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1. INTRODUCTION  
 
 

Zemanian [4] has presented the theory of Banach space valued distribution. He has 
also discussed the Laplace transform of Banach space valued distribution. Further he has used 
these concepts for applications in the system theory and signals.Motivated by the work of 
Zemanian [4] and Tiwari [1, 2] we studied different testing function spaces of Gelfand-Shilov 
type for the the Banach space valued Potential transform. The topological properties of these 
spaces, different operators and their continuity and the Analyticity theorem are discussed. We 
also state and prove the inversion formula for Banach space valued Potential transform. 
 
 
2. BANACH SPACE ALUED TESTING FUNCTION SPACES 
 
 
2.1. THE SPACES : )(,, AP dc 

 
 
Let A be a Banach space. For 0 ,  is defined as, )(,, AP dc 
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where c and d are real numbers. For 0k , we set . 1kk

The topology of the space  is generated by the family of seminorms    

denoted by . 

)(,, AP dc  
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2.2. THE SPACES : )(,,, AP mdc 

 
 
For given , the space is defined as, 0m
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The constant 0 ,  depend on kC  ,k  and the function  ,  tdc,  is as in equation 

(1). 

The topology of the  is generated by the family of seminorms  and 

denoted by . Clearly the space is subspace of . 
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2.3. THE SPACES : );,( AzwP
 
 
Following Zemanian [5, p. 102], the space  is defined as, );,( AzwP
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3. TOPOLOGICAL PROPERTIES OF TESTING FUNCTION SPACES 
 
 
3.1. PROPOSITION: 

 
 

If  then 21 mm     ApAp mdcmdc 21 ,,,,,,    and    
 AT

AT
AT

mba

mba
mba

1

2

1
,,,

,,,
,,,




   

Proof is simple and hence omitted. 
 
 

3.2. PROPOSITION: 
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Now let us consider )(,, AP dc   . 
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Therefore, we have  
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where L, Ck are depends on the function   
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3.3. PROPOSITION: 
 
 
If 21    then . )()(

21 ,,,, APAP dcdc  
Proof is simple and hence omitted. 
 
 

3.4. THEOREM: 
 
 
The space D(A) is subspace of  and cannonical injection of D(A) into 

 is continuous. 
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Hence  AP dc  ,, . Therefore    APAD dc ,, . 

To prove contiuity if the injection mapping, consider a sequence converging to zero in 
D(A). 
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4. OPERATORS ON THE TESTING FUNCTION SPACE  )(,, AP dc 

 
 

4.1. SHIFTING OPERATORS ON THE TESTING FUNCTION SPACE  )(,, AP dc 

 
 
Theorem: Shifting operator,      ttS :  is automophism on . )(,, AP dc 
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here C’ is some constant. Theefore the shifting operator      ttS :  is a topological 

automorphism on the space . )(,, AP dc 

 
 
4.2. SCALING OPERATOR ON THE TESTING FUNCTION SPACE  )(,, AP dc 

 
 
Theorem: Scaling operator,    mttS  :  is automophism on . )(,, AP dc 

Proof: Here    mttS  :  is well defined and linear. 
For continuity consider, 
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Where Ck is some constant. We have    APmt dc  ,, . 

Therefore scaling operator,    mttS  :  is automophism on . )(,, AP dc 

 
 

4.3. INVERSE SCALING OPERATOR ON THE TESTING FUNCTION SPACE  )(,, AP dc 
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Proof: The proof is simple as 4.2. and hence omitted. 
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4.4. DIFFERENTIAL OPERATOR ON THE TESTING FUNCTION SPACE  )(,, AP dc 

 
 
Theorem: The differential operator,    ,,,,: dcdc PAP    difined by the map 
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As the right hand side of the above equation is not bounded, we conclude that 
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Hence C must be zero and therefore 0 . This proves that   is injective continuity 
of . Follows from the inequality equation (6). Hence proved. 

 
 

5. BANACH SPACE VALUED DISTRIBUTIONAL POTENTIAL TRANSFORM 
 
 

5.1. POTENTIAL TRANSFORM OF A-VALUED DISTRIBUTION 
 
 

Let  i.e. is a function defined on .  ADf ; f AD     to

f is said to be Banach space valued Potential transformable, if there exists two 
members   ;, 21  , such that 21   ,   APf ;, 21   and in addition 

 if either  w,  A;zPf  21 or     w z . 

With     212221 ,
ty

t
 ,Re:  Pyyf 


  . Then the Potential transform is 

defined as     fy
yt

t
tfyF 


 ,,

22
.  yF   is an A-valued analytic function on . f

 
 

ISSN: 1844 – 9581                                                                                                                                         Mathematics Section 



Banach space valued Potential transform                                                              Nanda D. Sahu, Alka S. Gudadhe                                126 

5.2. POTENTIAL TRANSFORM OF THE [A;B] VALUED DISTRIBUTION 
 
 

The space  can be identified with the space   BAzwP  ; ;,      [ , ;  ;  P w z A B  through 
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6. ANALYTICITY THEOREM 
 
 
Theorem: If  for     yFtfP  fy  , where   21 Re:   yyf

f

 and  

then  is an   valued analytic function on 

  BADF  ,

 yF BA  ;  , where fy   for each nonnegative 

integer k,     ,,
22 yt

t
yDF


tf  i.e.      tyKtfyDF , , .  

  and  
22

,
yt

t
tyK


 . Also      tyKtfyFD q

q ,, , where    tyK
t

tyK
q

q

q ,,





Proof:      tyKtfyDF ,, has meaning, since   APf ;, 21   and  2122
,P

yt

t



. 

Let y be an arbitrary but fixed point in f . Choose the real positive numbers,  

and  such that 

 ,, rba

1r    1 21 ReRe   ryrya b  also y be the complex increament 

such that ry  . Consider, 

         ttf
ty

t

y
tf

y

yFyyF
y







 


,
22

,
22

, 

where 

 
  222222

1

ty

t

yty

t

tyy

t

y
ty 
















 , 

which can be written as, 

        tyK
y

tyKtyyK
y

ty ,,,
1







 , 
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To proceed, let c denotes the circle with the centre y and radius r1. 
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Let us restrict r1 such that c lies entirely with f  and 10 rr  . 

The differentiation on y is interchanged with differentiation on t and using Cauchy’s 
integral formula we get, 
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This shows that   0 ty  as 0y  and hence the proof is complete. 

 
 

7. INVERSE OF BANACH SPACE VALUED POTENTIAL TRANSFORM 
 
 
Sahu in [3] has presented that Banach Space Value Potential transform is iterated 

second version Laplace transform, provided it exist, i.e. 
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7.1. LEMMA: 
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. 

Also, complex inversion formula for Laplace Transform is 

    xrerF
i

xf ;2
2

1


 . 

If we set , we obtain xt 2     2

;2
2

1 rterF
i

tf


  
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If we replace r by s, we get,     2

;2
2

1 stesF
i

tf


 . 

7.2. COMPLEX INVERSION THEOREM: 
 
 

Let  and   BADf ;     yFytfP , , for 

    212221 ,,Re:  P
ty

t
yyy f 


   then in the sense of convergence 

in    BAD ;

    2

2

2

;2
2

2

4

1 wt

ww

yw eeyF
ii

tf





 

provide that, all integrals involved are convergent. 
Proof: Let  AD . Choose 21   ba . 

We want to show that       2

2

2

;2
2

2

4

1
, wt

ww

yw eeyF
ii

ttf





 . 

That is the natural consequence of definition of Potential transform and 
Complex Inversion Formula for Second version Laplace transform. 
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