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Abstract. In this paper we give two proofs for a result regarding the antiderivatives of
functions of the form g(x) = f (x)—ax, where f :[0,1] —> R is a Lipschitz function.
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1. INTRODUCTION

In [1] it proves that every Lipschitz function F:R - R, |F(x)—F(y)|<m|x—y]| for
allx,yeR, can be written as sum of two injective Lipschitz functions,
F=F+F(FR:R->R, F,:R—>R).Infact, F, =F —al, where | is the identity of R and
a>m.

Let f:[0,]] >R be a Lipschitz function, |f(x)—f(y)|<k|x-y| for all
x,yeR (k>0)and g:[0,1] > R defined by g(x) = f(x)—(k+8&)x, >0. Itis clear that g
has antiderivatives, being continuous on[0,1] .

In this note we prove a result about the antiderivatives of the function g. We give two

proofs for this result, the second using the same type of reasoning as in the proof of the said
result from paper [1].

2. RESULTS

Theorem 2.1 If f(0)=0, then G(0) = G(1) for all G antiderivative of g.

First Proof: We have |f (x)|<k|x| for all x[0,1]. Consequently we obtain

j‘f(x)dx

1 1 k
s'([|f(x)|dxs.(|;kxdx=§.

Suppose that it existsG , an antiderivative of g, so that G(0) =G(1) . Then
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j[g(x)dx:O.

It results that

j f(x)dx = Jl'(k + @) xdx.

Therefore
1
[ f00dx= k+6
0 2
¢ k
and this fact is contradictory to j f (x)dx SE'
0

Second Proof: Let x €[0,1]. We have

(k+0)[x—y|=|(f(x)—g(x)—(f(y)-g(y)|<
[T ()= F(y)|+|g0) - g(y)| <k|[x=y|]+|a(x)-a(y)|.

It results now that |g(x)—g(y)|>@|x—y| for all xe[0,1] and consequently g is
injective. g(0)= f(0)=0implies that g(x)=0 for all xe(0,1]. If it exists G, an
antiderivative of g, so that G(0) =G(2), then we have a & € (0,1) with g(&) =0 and this is
contradictory to the fact that g is not null on (0,1) . Thus the second proof of Theorem 2.1 is
complete.
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