# PROPAGATORS AND DILATIONS ON PSEUDO-HILBERT SPACES 

LOREDANA CIURDARIU ${ }^{1}$, PASTOREL GASPAR ${ }^{2}$

Manuscript received: 21.02.2011. Accepted paper: 04.04.2011.
Published online: 10.06.2011.


#### Abstract

In this paper we shall try to transpose the conditions of the existence of propagators for kernel on *-semigroups, notion introduced by P. Masani [6]. We will start with a few additional observations concerning *-representations and then we will present some properties of propagators and dilations.


Keywords: pseudo-Hilbert spaces, *-representations, propagators, dilations.
2000 Mathematics subject classification: 47 A 45; 42 B 10.

## 1. INTRODUCTION

In order to prove the results of the following sections, we need to recall the next definitions and properties. Let $\mathbf{Z}$ - be an admissible space and $\mathcal{H}$ a Loynes $\mathbf{Z}$ - space, see $[1,4,5]$.
Lemma 1. [1] If $p$ is a continuous and monotone seminorm on $\mathbf{Z}$, then

$$
q_{p}(h)=(p([h, h]))^{\frac{1}{2}}
$$

is a continuous seminorm on $\mathscr{H}$.
Proposition 1. [1] If $\mathscr{H}$ is a pre-Loynes Z-space and $\mathscr{P}_{Z}$ is a set of monotonous (increasing) seminorms defining the topology of $\mathbf{Z}$, then the topology of $\mathscr{H}$ is defined by the sufficient and directed set of seminorms $Q_{\mathrm{P}}=\left\{q_{p} \mid p \in \mathscr{P}_{Z}\right\}$.

Consequence 1. [1] Using the above notations, for every monotone seminorm $p$ on $\mathbf{Z}$ the following inequality holds:

$$
p([h, k]) \leq 2 q_{p}(h) q_{p}(k) \text { for all } \mathrm{h}, \mathrm{k} \in \mathscr{H} .
$$

We say that an operator $\mathrm{T} \in \mathcal{L}(\mathscr{H}, \mathscr{K})$ is in $\mathcal{C}(\mathscr{H}, \mathscr{K})$ if and only if for every seminorm $q_{p}^{2}$ on $\mathscr{K}$, there exists a constant $M_{p}>0$ and a seminorm $q_{p_{0}}^{1}$ on $\mathscr{H}$ such that

$$
q_{p}^{2}(T h) \leq M_{p} q_{p_{0}}^{1}(h), h \in \mathscr{H} .
$$

Obviously, this condition will be equivalent with the condition: for every seminorm $p \in \mathscr{P}_{Z}$, there is a constant $M_{p}>0$ and a seminorm $p_{0} \in \mathscr{P}_{Z}$ such that

$$
\begin{equation*}
p\left([T h, T h]_{\mathrm{K}}\right) \leq M_{p}^{2} p_{0}\left([h, h]_{\mathrm{H}}\right), \mathrm{h} \in \mathscr{H} . \tag{1}
\end{equation*}
$$

[^0]If we take above $p_{0}=p$ then we obtain the class $\mathcal{C Q}(\mathscr{H}, \mathcal{K})$ and $\mathcal{C} Q^{*}(\mathscr{H}, \mathcal{K})=\mathcal{C Q}(\mathscr{H}$, $\mathscr{K}) \cap \mathcal{L}^{*}(\mathscr{H}, \mathscr{K})$. Also, we recall that an operator $\mathrm{T} \in \mathcal{L}(\mathscr{H}, \mathscr{K})$ is called gramian bounded ( $\mathrm{T} \in$ $\mathfrak{B}(\mathscr{H}, \mathscr{K})$ ), if there exists a constant $\mu>0$ such that in the sense of order of Z , the following inequality holds

$$
\begin{equation*}
[\mathrm{Th}, \mathrm{Th}]_{\mathrm{K}} \leq \mu[\mathrm{h}, \mathrm{~h}]_{\mathrm{H}}, \mathrm{~h} \in \mathscr{H} . \tag{2}
\end{equation*}
$$

The study of Loynes Z-spaces with a given reproducing kernel was given in [3] Theorem 4.1. We will state a similar result for an arbitrary Z-space. The notions of reproducing kernel and sesquilinear Z-form are also given in [2].

Theorem 1. Let $Z$ be an admissible space in the Loynes sense. For any positive definite kernel $\Gamma$. There is a unique Loynes Z -space $\mathscr{H}_{\Gamma}$, which admits $\Gamma$ as a reproducing kernel.

Definition 1. Let $Z$ be an admissible semigroup and $\Gamma: S \times S \rightarrow Z$ a $Z$-valued kernel on $S$. $\Gamma$ satisfies the boundedness condition, if there is a function $\mathrm{c}: \mathrm{S} \rightarrow[0, \infty)$ so that

$$
\begin{equation*}
\mathrm{c}(\mathrm{u}) \Gamma-\Gamma_{u} \tag{BC}
\end{equation*}
$$

is positive definite for all $\mathrm{u} \in S$, where $\Gamma_{u}(s, t)=\Gamma(u s, u t)$.
$\Gamma$ satisfies the q -boundedness condition ( BCQ ), if for every seminorm $p \in \mathcal{P}_{Z}$, there is a function $c_{p}: S \rightarrow[0, \infty)$ such that

$$
\begin{equation*}
p\left(\sum_{j, k=1}^{n} c_{j} \overline{c_{k}} \Gamma_{u}\left(s_{j}, s_{k}\right)\right) \leq c_{p}(u) p\left(\sum_{j, k=1}^{n} c_{j} \overline{c_{k}} \Gamma\left(s_{j}, s_{k}\right)\right) \tag{BCQ}
\end{equation*}
$$

for all $\mathrm{n} \in \mathbf{N}, c_{1}, \ldots, c_{n} \in \mathbf{C}, s_{1}, \ldots, s_{n} \in \mathbf{S}, u \in S$.
$\Gamma$ will satisfy the continuity condition (CC), if for every seminorm $\quad p \in \mathscr{P}_{Z}$, there are two functions on $\mathrm{S}, \gamma_{p}: \mathrm{S} \rightarrow \mathcal{P}_{\mathrm{Z}}$ and $c_{p}: \mathrm{S} \rightarrow[0, \infty)$ such that

$$
\begin{equation*}
p\left(\sum_{j, k=1}^{n} c_{j} \overline{c_{k}} \Gamma_{u}\left(s_{j}, s_{k}\right)\right) \leq c_{p}(u) \gamma_{p}(u)\left(\sum_{j, k=1}^{n} c_{j} \overline{c_{k}} \Gamma\left(s_{j}, s_{k}\right)\right) \tag{CC}
\end{equation*}
$$

for all $\mathrm{n} \in \mathbf{N}, c_{1}, \ldots, c_{n} \in \mathbf{C}, s_{1}, \ldots, s_{n} \in \mathrm{~S}, u \in S$.
Definition 2. If C is a $\mathcal{F}(\mathscr{H}, Z)$-valued kernel on the semigroup $S$, then $C$ satisfies:
(i) the boundedness condition, if there exists a function $\rho: S \rightarrow[0, \infty)$ such that

$$
\begin{equation*}
\rho(\mathrm{u}) \mathrm{C}-C_{u} \text { is positive definite }(u \in S), \tag{BC}
\end{equation*}
$$

where $\quad C_{u}(s, t)=C(u s, u t)$.
(ii) q -boundedness condition (BCQ), if the associate Z -valued kernel $\Gamma=\Gamma_{C}$ defined by $\Gamma_{C}(\lambda, \mu)=C(t, s)(k, h), \lambda=(s, h), \mu=(t, k) \in S \times \mathscr{H}$ satisfies for a function $c_{p}(\mathrm{u})$, the condition (BCQ) from Definition 1, where we consider $\Gamma_{u}=\Gamma_{C_{u}}$;
(iii) the continuity condition (CC), if there exist the functions $c_{p}: \mathrm{S} \rightarrow[0, \infty)$ and $\gamma_{p}: \mathrm{S} \rightarrow \mathcal{P}_{Z}$ such that the conditions (CC) from the Definition 1 with $\Gamma_{C}$ and $\Gamma_{C_{u}}$ instead of $\Gamma$ and $\Gamma_{u}$ respectively take place.

Definition 3. The function $\mathcal{F}(\mathscr{H}, Z)$-valued $\phi$, defined on the $*-$ semigroup S is called positive definite if the $\mathcal{F}(\mathscr{H}, \mathrm{Z})$-valued associated kernel $C_{\phi}: S \times S \rightarrow \mathcal{F}(\mathscr{H}, \mathrm{Z})$ defined by $C_{\phi}(\mathrm{s}, \mathrm{t})=\phi\left(t^{*} \mathrm{~s}\right), \mathrm{s}, \mathrm{t} \in \mathrm{S}$ is positive definite.

We say that such a function $\phi$ satisfies the boundedness conditions (BC), (BCQ), (CC) respectively, if the associated kernel $C_{\phi}$ satisfies the corresponding conditions from the Definition 2.

## 2. PSEUDO-HILBERT REPRESENTATIONS OF *- SEMIGROUPS

Given a Loynes Z-space $\mathscr{H}$, we can associate with it the algebra of the linear operators $\mathcal{L}(\mathscr{H})$ and the involutive sub-algebra $\mathcal{L}_{*}(\mathscr{H})$, respectively. Looking now at the different types of continuities in $\mathcal{L}(\mathscr{H})$, we can identify in a decreasing order the sub-algebras $\mathcal{C}(\mathscr{H}), \mathcal{C}((\mathscr{H})$, $\mathfrak{B}(\mathscr{H})$.

Let us recall now that $[\mathscr{B} *(\mathscr{H})]^{*} \subset \mathscr{B}^{*}(\mathscr{H})$. But it isn't sure that $[\boldsymbol{C} *(\mathscr{H})]^{*} \subset \mathcal{C} *$ $(\mathscr{H})$. Concerning the sub-algebras, we can state the following:
Remark 1 The adjoint of any linear operator (if there is one) q--bounded remains q-bounded. More precisely, the following inclusion takes place for any Loynes Z-space.

$$
\begin{equation*}
\left[\mathcal{C} \mathfrak{Q}^{*}(\mathscr{H})\right]^{*} \subset \mathcal{C} \mathbb{Q}^{*}(\mathscr{H}) . \tag{3}
\end{equation*}
$$

Indeed, if $\mathrm{T} \in \mathcal{C} \mathbb{Q}^{*}(\mathscr{H})$ and $p \in \mathscr{P}_{Z}$, we shall denote by $M_{p}$ the positive constant, for which $q_{p}(T h) \leq M_{p} q_{p}(h), h \in \mathscr{H}$, and then applying the definition of $q_{p}$ and the Schwarz type inequality from Consequence 1, the following inequalities occur successively for $q_{p}\left(T^{*} h\right) \neq 0$ :

$$
\begin{aligned}
& {\left[q_{p}\left(T^{*} h\right)\right]^{2}=p\left(\left[T^{*} h, T^{*} h\right]\right)=p\left(\left[T T^{*} h, h\right]\right) \leq} \\
& \leq 2 p\left(\left[T T^{*} h, T T^{*} h\right]\right)^{1 / 2} p([h, h])^{1 / 2}=2 q_{p}\left(T T^{*} h\right) q_{p}(h) \leq 2 M_{p} q_{p}\left(T^{*} h\right) q_{p}(h)
\end{aligned}
$$

hence $q_{p}\left(T^{*} h\right) \leq 2 M_{p} q_{p}(h)$, inequality which obviously will be also checked for h for which $q_{p}\left(T^{*} h\right)=0$.

According to Definition 2, (ii) the Z-valued associated kernel $\Gamma=\Gamma_{C}$ can be defined by $C(s, t)(h, k)=\Gamma_{C}(\lambda, \mu) ; \lambda=(t, k), \mu=(s, h) \in S \times \mathscr{H}$. In this case the positivity condition of C becomes:

$$
\sum_{j, l=1}^{n} C\left(s_{l}, s_{j}\right)\left(h_{l}, h_{j}\right)=\sum_{j, l=1}^{n} \Gamma_{C}\left(\lambda_{j}, \lambda_{l}\right) \geq 0
$$

where $\lambda_{j}=\left(s_{j}, h_{j}\right), \lambda_{l}=\left(s_{l}, h_{l}\right)$. The kernel $\Gamma_{C}$ is positive definite iff C is a $\left.\mathscr{A} \mathscr{H}, \mathrm{Z}\right)$ valued kernel on $\mathrm{S} \times \mathscr{H}$, and $\Gamma_{C}$ will be linear in the second variable and anti-linear in the first variable.

Definition 4. Any algebraic morphism of a semigroup with values in one of the previously defined operator algebras on a certain Loynes Z-space is called a pseudo-Hilbert representation of the given semigroup. More precisely, if S is a semigroup, $\mathscr{H}$ a Loynes Zspace and $\mathcal{G}(\mathscr{H})$ is one of the operator algebras (i.e. the position of $\mathcal{G}$ is successively taken by $\mathcal{L}, \mathcal{e}, \mathcal{C}(, \mathscr{B})$, then $\pi: S \rightarrow \mathcal{G}(\mathscr{H})$ is a representation on $\mathscr{H}$ if

$$
\begin{equation*}
\pi(s t)=\pi(s) \pi(t) ; \quad \mathrm{s}, \mathrm{t} \in \mathrm{~S} \tag{4}
\end{equation*}
$$

$\pi$ is called unital pseudo-Hilbert representation, $\mathcal{G}(\mathscr{H})$-valued, if the semigroup S has unit e and $\pi$ satisfies even more

$$
\begin{equation*}
\pi(e)=I_{\mathbf{H}} \tag{5}
\end{equation*}
$$

$\pi$ is called ${ }^{*}$-pseudo-Hilbert representation if the values of the morphism are in one of the algebras $\mathcal{G}^{*}(\mathcal{H})$ with $\mathcal{L}, \mathcal{C}, \boldsymbol{C} \mathcal{Q}, \boldsymbol{B}$ in the position of $\mathcal{G}, \mathrm{S}$ is a *-semigroup and $\pi$ satisfies

$$
\begin{equation*}
\pi\left(s^{*}\right)=\pi(s)^{*}, \quad s \in \mathrm{~S} \tag{6}
\end{equation*}
$$

Now, we shall refer to the positivity and boundedness properties which are satisfied by the pseudo-Hilbert representations. These properties will be formulated for a representation $\pi$ using the language of the $\mathcal{F}(\mathscr{H}, \mathrm{Z})$-valued kernel $C_{\pi}$ associated to $\pi$ by

$$
\begin{equation*}
\left[C_{\pi}(s, t)\right](h, k)=[\pi(s) h, \pi(t) k]_{H}, \quad \mathrm{~s}, \mathrm{t} \in \mathrm{~S}, \quad \mathrm{~h}, \mathrm{k} \in \mathscr{H}, \tag{7}
\end{equation*}
$$

or if $\Gamma_{C}$ is defined by,

$$
\begin{equation*}
\left[C_{\pi}(s, t)\right](h, k)=[\pi(t) h, \pi(s) k]_{H}, \quad \mathrm{~s}, \mathrm{t} \in \mathrm{~S}, \quad \mathrm{~h}, \mathrm{k} \in \mathscr{H} . \tag{8}
\end{equation*}
$$

## Theorem 2.

(i) If $\pi$ is a pseudo-Hilbert representation of a semigroup and $C_{\pi}$ is the kernel of the associated sesquilinear Z-form, then the following assertions take place
(a) The kernel $C_{\pi}$ is positive definite;
(b) If $\pi$ has value in $\mathcal{C}(\mathscr{H}), \mathcal{C Q}(\mathscr{H})$ and $\mathscr{B}(\mathscr{H})$ respectively, then the associated kernel $C_{\pi}$ satisfies the boundedness conditions (CC), (BCQ) and (BC) respectively.
(ii) If $\pi$ is a *-pseudo-Hilbert representation of a *-semigroup, then
(a) $\pi$ is a positive definite operatorial function on a*-semigroup.
(b) If $\pi$ takes values in $\mathcal{C}^{*}(\mathscr{H}), \mathcal{C}^{*} \mathcal{Q}(\mathscr{H})$ and $\mathscr{B}^{*}(\mathscr{H})$ respectively, then for the associated operatorial kernel $\Gamma_{\pi}(s, t)=\pi\left(t^{*} s\right)$, $\mathrm{s}, \mathrm{t} \in \mathrm{S}$ the boundedness conditions (CC), (BCQ) and (BC) respectively, are satisfied.
Proof: (i) If $\bar{s}=\left(s_{1}, \ldots, s_{n}\right) \subset S, \bar{h}=\left(h_{1}, \ldots, h_{n}\right) \subset \mathscr{H}$, the next calculus

$$
\begin{gather*}
\sum_{j, l=1}^{n} C_{\pi}\left(s_{j}, s_{l}\right)\left(h_{j}, h_{l}\right)=\sum_{j, l=1}^{n}\left[\pi\left(s_{j}\right) h_{j}, \pi\left(s_{l}\right) h_{l}\right]= \\
=\left[\sum_{j=1}^{n} \pi\left(s_{j}\right) h_{j}, \sum_{l=1}^{n}, \pi\left(s_{l}\right) h_{l}\right] \geq 0 \tag{9}
\end{gather*}
$$

or

$$
\sum_{j, l=1}^{n} C_{\pi}\left(s_{j}, s_{l}\right)\left(h_{l}, h_{j}\right)=\sum_{j, l=1}^{n}\left[\pi\left(s_{l}\right) h_{l}, \pi\left(s_{j}\right) h_{j}\right]
$$

shows that (a) takes place.
Further on, if we choose $u \in \mathrm{~S}$ with the above notations we obtain, by an easy calculus, the relation:

$$
\sum_{j, l=1}^{n} C_{\pi}\left(u s_{j}, u s_{l}\right)\left(h_{j}, h_{l}\right)=\left[\pi(u) \sum_{j=1}^{n} \pi\left(s_{j}\right) h_{j}, \pi(u) \sum_{l=1}^{n} \pi\left(s_{l}\right) h_{l}\right]
$$

or

$$
\sum_{j, l=1}^{n} C_{\pi}\left(u s_{j}, u s_{l}\right)\left(h_{l}, h_{j}\right)=\left[\pi(u) \sum_{l=1}^{n} \pi\left(s_{l}\right) h_{l}, \pi(u) \sum_{j=1}^{n} \pi\left(s_{j}\right) h_{j}\right]
$$

hence by applying successively the fact that $\pi(u)$ belongs to $\mathcal{C}(\mathscr{H}), \mathcal{C Q}(\mathscr{H})$ and $\mathfrak{B}(\mathscr{H})$ respectively, it results that $C_{\pi}$ satisfies in an appropriate manner the boundedness conditions (CC), (BCQ) and (BC) respectively.

We should mention that the functions, depending on $p \in \mathcal{P}_{Z}$ and $u \in \mathrm{~S}$ which will appear in the boundedness conditions for the kernel $C_{\pi}$ are constant, that depend or not of $p \in \mathscr{P}_{Z}$, depending on the kind of continuity satisfied by the operator $\pi(u)$.

For example, in the last case the function $\mathrm{C}(\mathrm{u})=\|\pi(u)\|$ will be used.
(ii) has a similar demonstration, but now, the kernel is operatorial.

## 3. PROPAGATORS FOR POSITIVE DEFINITE KERNEL ON SEMIGROUPS

## Definition 5.

(i) Let S be a multiplicative semigroup without unit and C a $\mathcal{F}(\mathscr{H}, \mathrm{Z})$-valued positive definite kernel on S . A triple $(\mathscr{K}, \mathrm{D}, \pi)$ is named minimal propagator of C if $\mathscr{K}$ is a Loynes Z - space, $\mathrm{D}: S \rightarrow \mathcal{L}(\mathscr{H}, \mathscr{K})$ and $\pi$ is a pseudo-Hilbert representation of S on $\mathscr{K}, \pi: S \rightarrow \mathcal{L}(\mathscr{K})$, such that:
$(\mathscr{K}, D)$ is a minimal factorization of $C$,

$$
\begin{equation*}
\pi(t) D(s)=D(t s), \quad(s, t \in S) \tag{10}
\end{equation*}
$$

(ii) Let S be a *-multiplicative semigroup and C a $\mathscr{F}(\mathscr{H}, \mathrm{Z})$-valued positive definite kernel on S. A triple $(\mathscr{K}, \mathrm{D}, \pi)$ is called ${ }^{*}$-minimal propagator of C if $\mathscr{K}$ is a Loynes Z -space, D: $S \rightarrow \mathcal{L}^{*}(\mathscr{H}, \mathscr{K})$ and $\pi$ is a ${ }^{*}$-pseudo-Hilbert representation of $\mathrm{S}, \pi: S \rightarrow \mathcal{L}^{*}(\mathcal{K})$ being such that the conditions (10) and (11) to be satisfied.

Lemma 2. Let ( $\mathcal{K}, \mathrm{D}, \pi$ ) be a minimal propagator of the $\mathcal{F}(\mathscr{H}, \mathrm{Z})$-valued kernel C on the *-semigroup S. Then $\pi$ is a *-representation of S if and only if C has the transfer property (CT).
Proof: If $\pi$ is a *-representation of S , then for any $\mathrm{s}, \mathrm{t} \in \mathrm{S}$ and $\mathrm{h}, \mathrm{k} \in \mathscr{H}$, we have:

$$
\begin{aligned}
C(u s, t)(h, k) & =[D(t) h, D(u s) k]_{\mathrm{K}}=\left[\pi(u)^{*} D(t) h, D(s) k\right]_{\mathrm{K}}= \\
& =\left[D\left(u^{*} t\right) h, D(s) k\right]=C\left(s, u^{*} t\right)(h, k) .
\end{aligned}
$$

Conversely, if the kernel C has the transfer property, then

$$
\begin{gathered}
{[\pi(t) D(s) h, D(r) h]_{\mathrm{K}}=[D(t s) h, D(r) h]_{\mathrm{K}}=C(r, t s)(h, h)=} \\
=C\left(t^{*} r, s\right)(h, h)=\left[D(s) h, D\left(t^{*} r\right) h\right]_{\mathrm{K}} .
\end{gathered}
$$

We shall deduce that there exists $\pi(t)^{*}$ and $\pi^{*}(t) D(r) h=D\left(t^{*} r\right) h,(\mathrm{~h} \in \mathscr{H}), r \in \mathrm{~S}$ thus $\pi(t)^{*} \in \mathcal{L}(\mathscr{K})$ by the fact that the space $\mathscr{K}$ is generated by vectors having the form $\{\mathrm{D}(\mathrm{s}) \mathrm{h}: \mathrm{s} \in \mathrm{S}, \mathrm{h} \in \mathscr{H}\}$.

Now $\pi\left(t^{*}\right) D(r) h=D\left(t^{*} r\right) h$ and $\pi^{*}(t) D(r) h=D\left(t^{*} r\right) h$ that leads us to $\pi\left(t^{*}\right)=\pi^{*}(t)$ $(\mathrm{t} \in \mathrm{S})$ also by the form of $\mathcal{K}$.

## 4. DILATIONS FOR $\mathcal{F}(\mathscr{H}, \mathrm{Z})$ - VALUED KERNELS ON *-SEMIGROUPS

Next, we shall introduce the notion of minimal dilation (for the Hilbert model, see for example [13]).

Definition 6. The triple ( $\mathcal{K}, \mathrm{R}, \pi$ ) is a minimal dilation (*-dilation) of the kernel $\mathrm{C}: \mathrm{S} \times \mathrm{S} \rightarrow \mathcal{F}(\mathscr{H}, \mathrm{Z})$ if
$\mathscr{K}$ is a Loynes Z -space, $\mathrm{R} \in \mathcal{L}(\mathscr{H}, \mathscr{K}),\left(\mathrm{R} \in \mathfrak{L}^{*}(\mathcal{H}, \mathscr{K})\right)$ and $\pi$ is a representation
(*-representation) of the semigroup (*-semigroup) S, in $\mathcal{L}(\mathscr{K})\left(\mathcal{L}^{*}(\mathscr{K})\right.$ );

$$
\begin{equation*}
C(s, t)(h, k)=[\pi(t) R h, \pi(s) R k]_{\mathrm{K}}, \quad(\mathrm{~s}, \mathrm{t} \in \mathrm{~S}, \mathrm{~h}, \mathrm{k} \in \mathscr{H}), \tag{13}
\end{equation*}
$$

(for the case when *-dilation takes the form $\mathrm{C}(\mathrm{s}, \mathrm{t})=\mathrm{R}^{*} \pi\left(t^{*} \mathrm{~s}\right) R \quad(\mathrm{~s}, \mathrm{t} \in \mathrm{S})$ );

$$
\begin{equation*}
\mathscr{K}=v\{\pi(s) R \mathscr{H}: \mathrm{s} \in \mathrm{~S}\} . \tag{14}
\end{equation*}
$$

Two such minimal dilations ( $\mathcal{K}, \mathrm{R}, \pi$ ) and ( $\mathscr{K}^{\prime}, \mathrm{R}^{\prime}, \pi^{\prime}$ ) are called gramian unitarily equivalents if there exists a gramian unitary operator $U \in \mathcal{C}\left(\mathscr{K},\left(\mathscr{K}^{\prime}\right)\right.$ such that:

$$
\begin{gather*}
\mathrm{U} \pi(\mathrm{~s})=\pi^{\prime}(\mathrm{s}) \mathrm{U}, \quad \mathrm{~s} \in \mathrm{~S} ;  \tag{15}\\
\mathrm{UR}=\mathrm{R}^{\prime} . \tag{16}
\end{gather*}
$$

If the representation $\pi$, takes values in the subalgebras $\mathcal{C}(\mathscr{H}), \mathcal{C}(\mathcal{H})$ and $\mathfrak{B}(\mathscr{H})$ respectively, and R is in the subspace $\mathcal{C}(\mathscr{H}, \mathscr{K}), \mathcal{C}(\mathcal{H}, \mathscr{K})$ and $\mathfrak{B}(\mathscr{H}, \mathscr{K})$ respectively, the corresponding dilation $(\mathcal{K}, \mathrm{R}, \pi)$ will be named $\mathcal{C}_{\text {-, }} \mathcal{C} \mathscr{Q}-, \mathfrak{B}$ - minimal dilation of C .

Let $S$ be a -semigroup.
Let

$$
\begin{align*}
& {\left[p\left(\sum_{j=1}^{n} C\left(s_{j}, t_{j}\right)\left(h_{j}, h\right)\right)\right]^{2} \leq C_{p}(h) p\left(\sum_{j, l=1}^{n} C\left(s_{j}^{*} t_{j}, s_{l}^{*} t_{l}\right)\left(h_{l}, h_{j}\right)\right),}  \tag{17}\\
& \left(s_{1}, \ldots, s_{n} \in S, t_{1}, \ldots, t_{n} \in S, h_{1}, \ldots, h_{n}, h \in \mathscr{H}\right), \text { for any } p \in \mathcal{P}_{Z} .
\end{align*}
$$

Proposition 2. Let $\mathscr{H}$ be a Loynes Z -space, and S a *-semigroup, and C a $\mathscr{F}(\mathscr{H}, \mathrm{Z})$-valued kernel on S , which satisfies the inequality (17). Then:
(i) there exists a function $\mathrm{A}: \mathrm{S} \rightarrow \mathcal{F}(\mathcal{H}, \mathrm{Z})$ such that

$$
\begin{equation*}
C(s, t)=A\left(s^{*} t\right) \quad(\mathrm{s}, \mathrm{t} \in \mathrm{~S}) \tag{18}
\end{equation*}
$$

(ii) the kernel C has the transfer property (CT).

Proof: The affirmation (ii) immediately results from (i), because

$$
C(u s, t)=A\left(s^{*} u^{*} t\right)=C\left(s, u^{*} t\right) .
$$

To check (i) we shall define $\mathrm{A}: \mathrm{S} \rightarrow \mathscr{F}(\mathscr{H}, \mathrm{Z})$ by

$$
A(u)=\left\{\begin{array}{l}
C(s, t), u \in S \cdot S ; u=s^{*} t \\
0, u \notin S \cdot S .
\end{array}\right.
$$

If $u=s_{1}^{*} t_{1}=s_{2}^{*} t_{2}$ then taking into account that $C\left(s_{1}, t_{1}\right)=C\left(s_{2}, t_{2}\right)$ we obtain that A is correctly defined.

Indeed, by nothing k with $h_{1}$ and -k with $h_{2}$ from (17), for $\mathrm{n}=2$ it results that

$$
\begin{aligned}
& {\left[p\left(C\left(s_{1}, t_{1}\right)(k, h)-C\left(s_{2}, t_{2}\right)(k, h)\right)\right]^{2} \leq C_{p}(h) p\left(\sum_{j, l=1}^{2} C\left(s_{j}^{*} t_{j}, s_{l}^{*} t_{l}\right)\left(h_{l}, h_{j}\right)\right)=} \\
& =C_{p}(h) p\left(\sum_{l, j=1}^{2} C(u, u)\left(h_{l}, h_{j}\right)\right)=C_{p}(h) p(C(u, u)(k, k)-C(u, u)(k, k)- \\
& -C(u, u)(k, k)+C(u, u)(k, k))=0,
\end{aligned}
$$

i.e. $p\left(C\left(s_{1}, t_{1}\right)(k, h)-C\left(s_{2}, t_{2}\right)(k, h)\right)=0$
for any $p \in \mathscr{P}_{Z}$, therefore
$C\left(s_{1}, t_{1}\right)(k, h)=C\left(s_{2}, t_{2}\right)(k, h)$ for any $\mathrm{h}, \mathrm{k} \in \mathscr{H}$, which completes the proof.
Having in mind that a function $\mathrm{A}: \mathrm{S} \rightarrow \mathcal{F}(\mathscr{H}, \mathrm{Z})$ is positive definite (i.e. it satisfies a boundedness condition respectively) if the kernel $\quad C_{A}: S \times S \rightarrow \mathcal{F}(\mathscr{H}, \mathrm{Z})$ given by $C_{A}(s, t)=A\left(t^{*} s\right) \quad(\mathrm{s}, \mathrm{t} \in \mathrm{S})$ is positive definite (i.e. it respectively satisfies the corresponding boundedness condition from Definition 3), the notion of *-minimal dilation introduced in Definition 6 makes sense for such functions.

It has a natural form. As it can be seen from:

Remark 2. If we consider a *-minimal dilation ( $\mathcal{K}, \mathrm{R}, \pi)$ (according to Definition 6) of the kernel $C_{A}$ associated to A , and if we observe that $A(s)=C_{A}(s, e)$, by applying the relation (13) for $\mathrm{t}=\mathrm{e}$, we obtain

$$
A(s)=R^{*} \pi(s) R, \quad s \in \mathrm{~S}
$$

Therefore, it is justified for the *-minimal dilation $(\mathscr{K}, \mathrm{R}, \pi)$ of $C_{A}$, to be the *-minimal dilation for the function A. For these functions, the following take place:

## Consequence 2.

(i) Let A be a $\mathcal{F}(\mathscr{H}, \mathrm{Z})$-valued function on S . If A satisfies the boundedness conditions (BCQ) and if A is ${ }^{*}$-dilatable (i.e. has a ${ }^{*}$-minimal dilation), then there exists a function $C_{p}$ : $\mathscr{H} \rightarrow \mathbf{R}_{+}$such that for any $\bar{s}=\left(s_{1}, \ldots, s_{n}\right) \subset S, t=\left(t_{1}, \ldots, t_{n}\right) \subset S, \bar{h}=\left(h_{1}, \ldots, h_{n}\right) \subset \mathscr{H}, h \in \mathscr{H}$

$$
\begin{equation*}
\left[p\left(\sum_{l=1}^{n} A\left(s_{l}\right)\left(h, h_{l}\right)\right)\right]^{2} \leq C_{p}(h) p\left(\sum_{j, l=1}^{n} A\left(s_{l}^{*} s_{j}\right)\left(h_{l}, h_{j}\right)\right) . \tag{19}
\end{equation*}
$$

(ii) Let $S_{0}$ be a sub-semigroup of ${ }^{*}$-semigroup S such that $S_{0}{ }^{*}=S_{0}$ and A : $\mathrm{S} \rightarrow \mathcal{F}(\mathscr{H}, \mathrm{Z})$ a positive definite function which satisfies the boundedness condition (BCQ). If there exists a Loynes Z-space $\mathscr{K}$, a function $\mathrm{D}: \mathrm{S} \rightarrow \mathcal{F}(\mathscr{H}, \mathrm{Z})$, a*-representation $\pi$ of S on $\mathscr{K}$ and an operator $\mathrm{R} \in \mathfrak{L}^{*}(\mathscr{H}, \mathscr{K})$ such that:

$$
\begin{array}{cl}
(\mathscr{H}, \mathrm{D}, \pi) \text { is a minimal propagator of } C_{A} \\
\mathrm{D}(\mathrm{~s})=\pi(\mathrm{s}) \mathrm{R} & \left(\mathrm{~s} \in S_{0}\right) \\
\mathrm{A}(\mathrm{~s})(\mathrm{h}, \mathrm{k})=[R h, \pi(\mathrm{~s}) R \mathrm{k}]_{\mathrm{K}} & \left(\mathrm{~s} \in S_{0}, \mathrm{~h}, \mathrm{k} \in \mathscr{H}\right)
\end{array}
$$

then there is a function $C_{p}: \mathscr{H} \rightarrow \mathbf{R}_{+}$so that, for any finite sequences $s_{1}, \ldots, s_{n} \in S_{0}$ and $h_{1}, \ldots, h_{n} \in \mathscr{H}, \mathrm{~h} \in \mathscr{H}$ we have

$$
\begin{equation*}
\left[p\left(\sum_{l=1}^{n} A\left(s_{l}\right)\left(h, h_{l}\right)\right)\right]^{2} \leq c_{p}(h) p\left(\sum_{j, l=1}^{n} A\left(s_{l}^{*} s_{j}\right)\left(h_{l}, h_{j}\right)\right) \tag{20}
\end{equation*}
$$

for any $p \in \mathcal{P}_{Z}$.
Proof: (i) Let ( $\mathcal{K}, \mathrm{R}, \pi$ ) be a ${ }^{*}$-minimal dilation of A. Then

$$
\begin{gathered}
{\left[p\left(\sum_{l=1}^{n} A\left(s_{l}\right)\left(h, h_{l}\right)\right)\right]^{2}=\left[p\left(\sum_{l=1}^{n}\left[R h, \pi\left(s_{l}\right) R h_{l}\right]\right)\right]_{\mathrm{K}}^{2}=} \\
=\left[p\left(\left[R h, \sum_{l=1}^{n} \pi\left(s_{l}\right) R h_{l}\right]_{\mathrm{K}}\right)\right]^{2} \leq 4 p([R h, R h]) p\left(\left[\sum_{j=1}^{n} \pi\left(s_{j}\right) R h_{j}, \sum_{l=1}^{n} \pi\left(s_{l}\right) R h_{l}\right]_{\mathrm{K}}\right)= \\
=4 q_{p}^{2}(R h) \cdot p\left(\sum_{j, l=1}^{n}\left[R h_{j}, \pi\left(s_{j}^{*} s_{l}\right) R h_{l}\right]\right)=4 q_{p}^{2}(R h) \cdot p\left(\sum_{\mathrm{K}, l=1}^{n} A\left(s_{j}^{*} s_{l}\right)\left(h_{j}, h_{l}\right)\right),
\end{gathered}
$$

i.e. exactly (19) if we take into account that A satisfies (BCQ) and use the fact that R is in $\mathcal{C} \mathcal{Q}(\mathscr{H}, \mathcal{K})$. Therefore, for $\mathrm{R} \in \mathcal{C Q}(\mathscr{H}, \mathscr{K})$ we have $p([R h, R h])=q_{p}^{2}(R h) \leq M_{p}^{2} p([h, h])$.

Considering $C_{p}(h)=4 M_{p}^{2} p([h, h])$, we obtain exactly the desired inequality. (iii) is obvious from (i).

Consequence 3. We notice that for a $\mathcal{G}(\mathscr{H})$ - valued positive definite function $\phi$, (where $\mathcal{G}$ can be $\mathcal{C}, \mathcal{C} \mathscr{Q}$ and $\mathscr{B}$ respectively) there is an operator $\mathrm{R} \in \mathcal{E}(\mathscr{H}, \mathfrak{K})$ (where $\mathcal{G}$ can be $\mathcal{C}, \mathcal{C} \mathscr{Q}$ and $\mathfrak{B}$ respectively) such that

$$
\phi\left(t^{*} s\right)=R \pi(t)^{*} \pi(s) R, \quad \mathrm{t}, \mathrm{~s} \in \mathrm{~S},
$$

is a *-semigroup with unit.
The following two theorems are analogue of the famous principal theorem of B. Sz.Nagy [8] for pseudo-Hilbert spaces. We mention that there are many extensions of this result (see A. Weron, F.H. Szafraniec, J. Stochel [9-13]).

Theorem 3. Let Z be an admissible space in the Loynes sense, $\mathscr{H}$ a pre-Loynes Z -space and Sa *-semigroup with unit e.

If T is a $\mathfrak{L}^{*}(\mathscr{H})$ - valued positive definite function on S , then there exists a pre-Loynes Z-space $\mathscr{K}_{0}$, a ${ }^{*}$-representation $\pi: S \rightarrow \mathcal{L}^{*}\left(\mathcal{K}_{0}\right)$ i.e.

$$
\begin{equation*}
\pi(\mathrm{e})=\mathrm{I}_{\mathrm{K}_{0}}, \quad \pi(s t)=\pi(s) \pi(t), \quad \pi(s)^{*}=\pi\left(s^{*}\right), \quad \mathrm{s}, \mathrm{t} \in \mathrm{~S} \tag{21}
\end{equation*}
$$

and an operator $\mathrm{R} \in \mathfrak{L}^{*}\left(\mathscr{H}_{\boldsymbol{H}}, \mathfrak{K}_{0}\right)$ such that

$$
\begin{equation*}
T(s)=R^{*} \pi(s) R, \quad \mathrm{~s} \in \mathrm{~S} \tag{22}
\end{equation*}
$$

Moreover, $\mathscr{K}_{0}$ satisfies the minimality condition in the sense that it is algebraically generated by the vectors $\{\pi(\mathrm{s}) \mathrm{Rh}, \mathrm{s} \in \mathrm{S}, h \in \mathscr{H}\}$.
Proof: We consider the $\mathcal{F}(\mathscr{H}, \mathrm{Z})$ - valued kernel $B_{T(s, t)}$, $\mathrm{s}, \mathrm{t} \in \mathrm{S}$ associated with $\mathrm{T}(.$, .) and then the derived kernel $\Gamma_{T}=\Gamma_{B_{T}}: \Lambda \times \Lambda \rightarrow Z$ defined by

$$
\Gamma_{T}(\lambda, \mu)=\left[h, T\left(s^{*} t\right) k\right], \quad \lambda=(s, h), \mu=(t, k) \in S \times \mathscr{H}=\Lambda .
$$

From hypothesis, $\Gamma_{T}$ will be a Z-valued kernel positive definite too. We denote by $\mathscr{K}_{0}$ the pre-Loynes space with the reproducing kernel, determined by the kernel $\Gamma_{T}$.

Using the condition given in Theorem 1, it is known that this $\mathscr{K}_{0}$ consists of all linear finite combinations of the $Z$-valued functions defined on $\Lambda=S \times \mathscr{H}$ having the form

$$
\begin{equation*}
\left\{\sum_{j=1}^{n} c_{j} \Gamma_{T}\left(\lambda_{j}, \cdot\right), n \in \mathbf{N}, c_{1}, \ldots, c_{n} \in \mathbf{C}, \lambda_{1}, \ldots, \lambda_{n} \in \Lambda\right\} \tag{23}
\end{equation*}
$$

and its gramian is defined by:

$$
\begin{equation*}
\left[k_{1}, k_{2}\right]_{\mathrm{K}_{0}}=\sum_{j, l=1}^{n} c_{j}^{1} c_{l}^{2} \Gamma_{T}\left(\lambda_{j}^{1}, \lambda_{l}^{2}\right), \quad \text { where } \quad k_{v}=\sum_{j=1}^{n} c_{j}^{v} \Gamma_{T}\left(\lambda_{j}^{v} \cdot\right), v=1,2 . \tag{24}
\end{equation*}
$$

Now, we construct the linear operator $\mathrm{R} \in \mathcal{L}^{*}\left(\mathscr{H}, \mathscr{K}_{0}\right)$. For $\mathrm{h} \in \mathscr{H}$ we consider $\lambda_{h}=(e, h) \in \Lambda$ and we define $\mathrm{Rh}=\Gamma_{T}\left(\lambda_{h}, \cdot\right), \mathrm{h} \in \mathscr{H}$. An easy calculus shows that $\mathrm{R} \in \mathcal{L}(\mathscr{H}$, $\boldsymbol{K}_{0}$ ).

Indeed if $\mu=(t, h) \in \Lambda$, then:

$$
\begin{aligned}
& {\left[R\left(c_{1} h_{1}+c_{2} h_{2}\right)\right](\mu)=\Gamma_{T}\left(\lambda_{c_{1} h_{1}+c_{2} h_{2}}, \mu\right)=\left[c_{1} h_{1}+c_{2} h_{2}, T\left(e^{*} t\right) h\right]=} \\
& =c_{1}\left[h_{1}, T\left(e^{*} t\right) h\right]+c_{2}\left[h_{2}, T\left(e^{*} t\right) h\right]=\left[c_{1} \Gamma_{T}\left(\lambda_{h_{1}}, \cdot\right)+c_{2} \Gamma_{T}\left(\lambda_{h_{2}}, \cdot\right)\right](\mu)= \\
& =\left(c_{1} R h_{1}+c_{2} R h_{2}\right)(\mu), \\
& \quad\left(c_{1}, c_{2} \in \mathbf{C}, h_{1}, h_{2} \in \mathscr{H}\right) .
\end{aligned}
$$

For the existence of the adjoint we proceed as below.
We take $\mathrm{k} \in \mathscr{K}_{0}$ arbitrarily, $k=\sum_{j=1}^{n} c_{j} \Gamma_{T}\left(\lambda_{j}, \cdot\right),\left(c_{j} \in \mathbf{C}, \lambda_{j}=\left(s_{j}, h_{j}\right) \in \Lambda, j=1, \ldots, n\right)$ and for $h \in \mathscr{H}$ applying the condition (24) we obtain successively

$$
\begin{gathered}
{[R h, k]_{K_{0}}=\left[\Gamma_{T}\left(\lambda_{h}, \cdot\right), \sum_{j=1}^{n} c_{j} \Gamma_{T}\left(\lambda_{j}, \cdot\right)\right]=\sum_{j=1}^{n} \bar{c}_{j} \Gamma_{T}\left(\lambda_{h}, \lambda_{j}\right)=\sum_{j=1}^{n} \bar{c}_{j}\left[h, T\left(e^{*} s_{j}\right) h_{j}\right] \mathscr{H}=} \\
=\left[h, \sum_{j=1}^{n} c_{j} T\left(s_{j}\right) h_{j}\right]_{\mathrm{H}},
\end{gathered}
$$

which show that $\mathrm{R}^{*}$ exists and

$$
\begin{equation*}
R^{*} k=\sum_{j=1}^{n} c_{j} T\left(s_{j}\right) h_{j}, \quad k=\sum_{j=1}^{n} c_{j} \Gamma_{T}\left(\lambda_{j},\right) . \tag{25}
\end{equation*}
$$

Now we define the representation $\pi: \mathrm{S} \rightarrow \mathfrak{L}^{*}\left(\mathscr{K}_{0}\right)$ by

$$
\begin{equation*}
\pi(s)\left(\sum_{j=1}^{n} c_{j} \Gamma_{T}\left(\lambda_{j}, \cdot\right)\right)=\sum_{j=1}^{n} c_{j} \Gamma_{T}\left(\lambda^{s}{ }_{j}, \cdot\right), \quad \mathrm{s} \in \mathrm{~S} \tag{26}
\end{equation*}
$$

where $\lambda_{j}=\left(s_{j}, h_{j}\right) \in \Lambda$ and $\lambda^{s}{ }_{j}=\left(s^{*} s_{j}, h_{j}\right)$.
It is obvious that $\pi(s) \in \mathcal{L}\left(\mathscr{K}_{0}\right)$ and it satisfies the first two relations from (21). For the last one we consider $k_{v}=\sum_{j=1}^{n} c_{j}^{v} \Gamma_{T}\left(\lambda_{j}^{v} \cdot \cdot\right), v=1,2, \lambda_{j}^{v}=\left(s_{j}^{v}, h_{j}^{v}\right), j=1,2, \ldots, n$ and the product

$$
\begin{aligned}
& {\left[\pi(s) k_{1}, k_{2}\right]_{\mathbf{K}_{0}}=\sum_{j, l=1}^{n} c_{j}^{1} \bar{c}_{l}^{2} \Gamma_{T}\left(\lambda_{j}^{1, s}, \lambda_{l}^{2, s}\right)=\sum_{j, l=1}^{n} c_{j}^{1} c_{l}^{2}\left[h_{j}^{1}, T\left(s_{j}^{1 *} s^{*} s_{l}^{2}\right) h_{l}^{2}\right]=} \\
& =\sum_{j, l=1}^{n} c_{j}^{1} c_{l}^{2} \Gamma_{T}\left(\lambda_{j}^{1}, \lambda_{l}^{2, s^{*}}\right)=\left[k_{1}, k_{2}^{*}\right]_{\mathbf{K}_{0}},
\end{aligned}
$$

where $k_{2}^{*}=\sum_{l=1}^{n} c_{l}^{2} \Gamma_{T}\left(\lambda_{l}^{2, s^{*}}\right)$.
It results that there exists $\pi(s)^{*}$ and taking this into account and the definition (26), the following takes place

$$
\pi(s)^{*} k_{2}=k_{2}^{*}=\pi\left(s^{*}\right) k_{2} .
$$

Now taking into account the definition of $\pi(s)$ and R , as well as the expression of $\mathrm{R}^{*}$ (see the formula (25)) because $\lambda_{h}^{s}=\left(s^{*}, h\right)$ we have successively for any $h \in \mathscr{H}$ :

$$
\begin{gathered}
\mathrm{R}^{*} \pi(\mathrm{~s}) \mathrm{Rh}=\mathrm{R}^{*} \pi(s) \Gamma_{T}\left(\lambda_{h},\right)=\mathrm{R}^{*} \Gamma_{T}\left(\lambda_{h}^{s}, \cdot\right)=\mathrm{T}(\mathrm{~s}) \mathrm{h}, \\
\mathrm{~s} \in \mathrm{~S}, \text { i.e. }(22) .
\end{gathered}
$$

Because of $\sum_{j=1}^{n} c_{j} \Gamma_{T}\left(\lambda_{j}, \cdot\right)=\sum_{j=1}^{n} c_{j} \Gamma_{T}\left(\lambda_{h_{j}}^{s_{j}},\right)=\sum_{j=1}^{n} c_{j} \pi\left(s_{j}\right) R h_{j}$ results that the minimality condition takes place.

Theorem 4. Let $\mathscr{H}$ be a Loynes Z -space and $\mathrm{S} \mathrm{a}^{*}$-semigroup with unit e. If T is a $\mathfrak{C}^{*}(\mathscr{H})-$ valued positive definite function on $*$-semigroup $S$ which satisfies the boundedness condition (Definition 2 and 3) respectively:
(BC) there exists a function $\rho: \mathrm{S} \rightarrow[0, \infty)$ such that $\rho(u) B_{T}-\left(B_{T}\right)_{u}$ is positive definite for any $u \in S$, i.e.

$$
\sum_{i, j=1}^{n} c_{i} \bar{c}_{j}\left[h_{i}, T\left(s_{i}^{*} u^{*} u s_{j}\right) h_{j}\right] \leq \rho(u) \sum_{i, j=1}^{n} c_{i} \bar{c}_{j}\left[h_{i}, T\left(s_{i}^{*} s_{j}\right) h_{j}\right] ;
$$

(BCQ) $\Gamma_{B_{T}}$ satisfies (BCQ) i.e. for any $p \in \mathcal{P}_{Z}$, there exists a function $c_{p}: S \rightarrow[0, \infty)$ such that

$$
p\left(\sum_{i, j=1}^{n} c_{i} \bar{c}_{j}\left[h_{i}, T\left(s_{i}^{*} u^{*} u s_{j}\right) h_{j}\right]\right) \leq c_{p}(u) p\left(\sum_{i, j=1}^{n} c_{i} \bar{c}_{j}\left[h_{i}, T\left(s_{i}^{*} s_{j}\right) h_{j}\right]\right) ;
$$

(CC) $\quad \Gamma_{B_{T}}$ satisfies (CC) i.e. for any $p \in \mathscr{P}_{Z}$, there exist $\gamma_{p}: S \rightarrow[0, \infty)$ and $c_{p}: S \rightarrow[0, \infty)$ so that

$$
p\left(\sum_{i, j=1}^{n} c_{i} \bar{c}_{j}\left[h_{i}, T\left(s_{i}^{*} u^{*} u s_{j}\right) h_{j}\right]\right) \leq c_{p}(u) \gamma_{p}(u)\left(\sum_{i, j=1}^{n} c_{i} \bar{c}_{j}\left[h_{i}, T\left(s_{i}^{*} s_{j}\right) h_{j}\right]\right) ;
$$

for any $\mathrm{n} \in \mathbf{N}, c_{1}, \ldots, c_{n} \in \mathbf{C}, s_{i}, u \in S, h_{i} \in S,(i=\overline{1, n})$; then there exists a Loynes $Z$-space $\mathcal{K}$, a *-representation of S in $\mathcal{C}^{*}(\mathcal{K})$, an operator $\mathrm{R} \in \mathcal{C}^{*}(\mathscr{H}, \mathcal{K})$ so that a relation like (22) holds.

Moreover, the boundedness conditions (BC), (BCQ) and (CC) of T are transferred to the representation $\pi$ like this

$$
\begin{array}{cc}
\text { (B) } & {[\pi(s) k, \pi(s) k] \leq c(s)[k, k],} \\
\text { (CQ) } & p([\pi(s) k, \pi(s) k]) \leq c_{p}(s) p([k, k]), \\
\text { C) } & p([\pi(s) k, \pi(s) k]) \leq c_{p}(s) \gamma_{p}(s)([k, k]), \tag{C}
\end{array}
$$

for any $\mathrm{s} \in \mathrm{S}, \mathrm{k} \in \mathscr{K}$, which means that $\pi$ takes values in $\mathfrak{B}^{*}(\mathcal{K}), \mathcal{C} \mathbb{Q}^{*}(\mathcal{K})$ and $\mathcal{C}^{*}(\mathcal{K})$ respectively.
Proof: Obviously, he first part takes place taking $\mathscr{K}$ as a Loynes Z-space with the reproducing kernel $\Gamma_{T}$, i.e. the functional completion of the pre-Loynes space $\mathscr{K}_{0}$ from Theorem 3.

Because T is a $\mathcal{C}^{*}(\mathscr{H})$ - valued positive definite function, which satisfies one of the boundedness conditions (BC), (BCQ) and (CC) respectively, T will be $\mathscr{B}^{*}(\mathscr{H})$-, $\mathcal{C} Q^{*}(\mathscr{H})$ - and $\mathcal{C}^{*}(\mathscr{H})$ - valued respectively. Now, by expressing the gramian $[\mathrm{Rh}, \mathrm{Rh}]$ we obtain:

$$
[R h, R h]=\left[\Gamma_{B_{T}}\left(\lambda_{h}, \cdot\right), \Gamma_{B_{T}}\left(\lambda_{h}, \cdot\right)\right]=\Gamma_{B_{T}}\left(\lambda_{h}, \lambda_{h}\right)=[h, T(e) h],
$$

$\lambda_{h}=(e, h)$. Moreover, by applying (22) for $\mathrm{s}=\mathrm{e}$ we have:

$$
[T(e) h, h]=\left[R^{*} R h, h\right]=[R h, R h] \geq 0 \quad \text { for all } h \in \mathscr{H},
$$

therefore $\mathrm{T}(\mathrm{e}) \in \mathcal{C}_{+}^{*}(\mathscr{H})$. When $\mathrm{T}(\mathrm{s}) \in \mathscr{B}^{*}(\mathscr{H})$, we have $\mathrm{T}(\mathrm{e}) \in \mathscr{B}_{+}^{*}(\mathscr{H})$. It easily results that $\mathrm{R} \in \mathfrak{B}^{*}(\mathscr{H}, \mathscr{K})$. In the other three cases,

$$
q_{p}^{\mathrm{K}}(R h)=p^{2}([R h, R h])=p^{2}([h, T(e) h]) \leq 4 q_{p}^{\mathrm{K}}(h) q_{p}^{\mathrm{K}}(T(e) h)
$$

and using the fact that $\mathrm{T}(\mathrm{e})$ is $\mathcal{C} Q^{*}(\mathscr{H})$ - and $\mathcal{C}^{*}(\mathscr{H})$ - valued, we obtain that R is contained in $\mathcal{C} Q^{*}(\mathscr{H}, \mathscr{K})$ and $\mathcal{C}^{*}(\mathscr{H}, \mathscr{K})$ respectively, if we also show that $\mathrm{R}^{*}$ is continuous with the condition (CC) for T. This fact is obvious from (25).

Now,

$$
\begin{aligned}
& {[\pi(s) k, \pi(s) k]=\left[\sum_{j=1}^{n} c_{j} \Gamma_{T}\left(\lambda_{j}^{s},\right), \sum_{k=1}^{n} c_{k} \Gamma_{T}\left(\lambda_{k}^{s},\right)\right]=} \\
& =\sum_{j, k=1}^{n} c_{j} \bar{c}_{k} \Gamma_{T}\left(\lambda_{j}^{s}, \lambda_{k}^{s}\right)=\sum_{j, k=1}^{n} c_{j} \bar{c}_{k}\left[h_{j}, T\left(\left(s^{*} s_{j}\right)^{*}\left(s^{*} s_{k}\right)\right) h_{k}\right]= \\
& =\sum_{j, k=1}^{n} c_{j} \bar{c}_{k}\left[h_{j}, T\left(s_{j}^{*} s s^{*} s_{k}\right) h_{k}\right],
\end{aligned}
$$

and

$$
[k, k]=\sum_{j, k=1}^{n} c_{j} \bar{c}_{k} \Gamma_{T}\left(\lambda_{j}, \lambda_{k}\right)=\sum_{j, k=1}^{n} c_{j} \bar{c}_{k}\left[h_{j}, T\left(s_{j}^{*} s_{k}\right) h_{k}\right] .
$$

Then using the corresponding conditions (BC), (BCQ) and (CC) we obtain:

$$
\begin{gather*}
{[\pi(s) k, \pi(s) k] \leq C(s)[k, k], \quad \text { with } \mathrm{C}(\mathrm{~s})=\rho\left(s^{*}\right) ;}  \tag{B}\\
p([\pi(s) k, \pi(s) k]) \leq C_{p}(s) p([k, k]), \quad \text { with } C_{p}(s)=c_{p}\left(s^{*}\right) ;  \tag{CQ}\\
p([\pi(s) k, \pi(s) k]) \leq C_{p}(s) \gamma_{p}^{\prime}(s)([k, k]), \text { with } \gamma_{p}^{\prime}(s)=\gamma_{p}\left(s^{*}\right) .
\end{gather*}
$$

(C)

## REFERENCES

[1] Ciurdariu, L., Scientific Bulletin of the Politehnica University of Timisoara, Tom 49(63), 2, 52, 2004.
[2] Ciurdariu, L., Gaspar, P., Journal of Science and Arts, 2, 225, 2009.
[3] Gaspar, D., Gaspar, P., Analele Univ. de Vest Timisoara, Seria Matematica-Informatica, XLIII (2), 47, 2005.
[4] Loynes, R.M., Transactions of the American Mathematical Society, 116, 167, 1965.
[5] Loynes, R.M., Proceedings of the London Mathematical Society, 3, 373, 1965.
[6] Masani, P., Propagators and dilations, Proceeding of Conference "Probability Theory on Vector Spaces", Lecture Notes in Mathematics, 656, Springer, 95, 1978.
[7] Masani, P., SIAM Journal on Mathematical Analysis, 9(3), 414, 1978.
[8] Riesz, F., Nagy, B. Sz., Lecons d'analyse functionnelle, Budapest, 1952.
[9] Stochel, J., Bull. Pol. Acad. Sci., Ser. Math. Astronom. Phys., 28, 149, 1980.
[10] Stochel, J., Studia Mathematica, 74, 293, 1982.
[11] Stochel, J., Operator Theory: Advances and Applications, 11, 345, 1983.
[12] Stochel, J., Szafraniec F.H., Operator Theory: Advances and Applications, 14, 261, 1984.
[13] Stochel, J., Annales Polonici Mathematici, 48, 1, 1988.


[^0]:    ${ }^{1}$ Politehnica University of Timisoara, Mathematics Department, 300006 Timisoara, Romania. E-mail: ciu ls@yahoo.com
    ${ }^{2}$ West University of Timisoara, Mathematics Department, 300223, Timisoara, Romania. E-mail: pasto@math.uvt.ro

