ORIGINAL PAPER

PROPAGATORS AND DILATIONS ON PSEUDO-HILBERT SPACES

LOREDANA CIURDARIU¹, PASTOREL GASPAR²

Manuscript received: 21.02.2011. Accepted paper: 04.04.2011. Published online: 10.06.2011.

Abstract. In this paper we shall try to transpose the conditions of the existence of propagators for kernel on *-semigroups, notion introduced by P. Masani [6]. We will start with a few additional observations concerning *-representations and then we will present some properties of propagators and dilations.

Keywords: pseudo-Hilbert spaces, **-representations, propagators, dilations.* 2000 Mathematics subject classification: 47 A 45; 42 B 10.

1. INTRODUCTION

In order to prove the results of the following sections, we need to recall the next definitions and properties. Let Z - be an admissible space and \mathcal{H} a Loynes Z- space, see [1, 4, 5].

Lemma 1. [1] If p is a continuous and monotone seminorm on Z, then

$$q_{n}(h) = (p([h,h]))^{\frac{1}{2}}$$

is a continuous seminorm on \mathcal{H} .

Proposition 1. [1] If \mathcal{H} is a pre-Loynes Z-space and \mathcal{P}_{Z} is a set of monotonous (increasing) seminorms defining the topology of Z, then the topology of \mathcal{H} is defined by the sufficient and directed set of seminorms $Q_{\mathbf{P}} = \{q_{p} \mid p \in \mathcal{P}_{Z}\}$.

Consequence 1. [1] Using the above notations, for every monotone seminorm p on **Z** the following inequality holds:

 $p([h,k]) \le 2q_p(h)q_p(k)$ for all h, $k \in \mathcal{H}$.

We say that an operator $T \in \mathcal{L}(\mathcal{H}, \mathcal{K})$ is in $\mathcal{C}(\mathcal{H}, \mathcal{K})$ if and only if for every seminorm q_p^2 on \mathcal{K} , there exists a constant $M_p > 0$ and a seminorm $q_{p_0}^1$ on \mathcal{H} such that

$$q_p^2(Th) \leq M_p q_{p_0}^1(h), h \in \mathcal{H}.$$

Obviously, this condition will be equivalent with the condition: for every seminorm $p \in \mathscr{P}_{Z}$, there is a constant $M_{p} > 0$ and a seminorm $p_{0} \in \mathscr{P}_{Z}$ such that

$$p([Th, Th]_{\mathbf{K}}) \le M_{p}^{2} p_{0}([h, h]_{\mathbf{H}}), \quad h \in \mathcal{H}.$$
(1)

¹ Politehnica University of Timisoara, Mathematics Department, 300006 Timisoara, Romania. E-mail: <u>ciu_ls@yahoo.com</u>

² West University of Timisoara, Mathematics Department, 300223, Timisoara, Romania. E-mail: <u>pasto@math.uvt.ro</u>

If we take above $p_0 = p$ then we obtain the class $\mathcal{CC}(\mathcal{H}, \mathcal{K})$ and $\mathcal{CC}^*(\mathcal{H}, \mathcal{K}) = \mathcal{CC}(\mathcal{H}, \mathcal{K}) \cap \mathcal{L}^*(\mathcal{H}, \mathcal{K})$. Also, we recall that an operator $T \in \mathcal{L}(\mathcal{H}, \mathcal{K})$ is called gramian bounded ($T \in \mathcal{B}(\mathcal{H}, \mathcal{K})$), if there exists a constant $\mu > 0$ such that in the sense of order of Z, the following inequality holds

$$[\mathrm{Th},\mathrm{Th}]_{\kappa} \leq \mu [\mathrm{h},\mathrm{h}]_{\mathrm{H}} , \mathrm{h} \in \mathcal{H}.$$

$$\tag{2}$$

The study of Loynes Z-spaces with a given reproducing kernel was given in [3] Theorem 4.1. We will state a similar result for an arbitrary Z-space. The notions of reproducing kernel and sesquilinear Z-form are also given in [2].

Theorem 1. Let Z be an admissible space in the Loynes sense. For any positive definite kernel Γ . There is a unique Loynes Z-space \mathcal{H}_{Γ} , which admits Γ as a reproducing kernel.

Definition 1. Let Z be an admissible semigroup and $\Gamma: S \times S \rightarrow Z$ a Z-valued kernel on S. Γ satisfies the boundedness condition, if there is a function c: $S \rightarrow [0,\infty)$ so that

$$c(u)\Gamma - \Gamma_u$$
 (BC)

is positive definite for all $u \in S$, where $\Gamma_u(s,t) = \Gamma(us,ut)$.

 Γ satisfies the q-boundedness condition (BCQ), if for every seminorm $p \in \mathscr{P}_{Z}$, there is a function $c_{p}: S \rightarrow [0,\infty)$ such that

$$p(\sum_{j,k=1}^{n} c_j \overline{c_k} \Gamma_u(s_j, s_k)) \le c_p(u) p(\sum_{j,k=1}^{n} c_j \overline{c_k} \Gamma(s_j, s_k))$$
(BCQ)

for all $n \in \mathbb{N}$, $c_1, \dots, c_n \in \mathbb{C}$, $s_1, \dots, s_n \in \mathbb{S}$, $u \in S$.

Γ will satisfy the continuity condition (CC), if for every seminorm $p \in \mathscr{P}_Z$, there are two functions on S, $\gamma_p: S \to \mathscr{P}_Z$ and $c_p: S \to [0, \infty)$ such that

$$p(\sum_{j,k=1}^{n} c_j \overline{c_k} \Gamma_u(s_j, s_k)) \le c_p(u) \gamma_p(u) (\sum_{j,k=1}^{n} c_j \overline{c_k} \Gamma(s_j, s_k))$$
(CC)

for all $n \in \mathbb{N}$, $c_1, \dots, c_n \in \mathbb{C}$, $s_1, \dots, s_n \in \mathbb{S}$, $u \in S$.

Definition 2. If C is a $\mathcal{F}(\mathcal{H}, Z)$ –valued kernel on the semigroup S, then C satisfies: (i) the boundedness condition, if there exists a function $\rho: S \rightarrow [0,\infty)$ such that

 $\rho(\mathbf{u})\mathbf{C} - C_u$ is positive definite ($u \in S$), (BC)

where $C_u(s,t) = C(us,ut)$.

(ii) q-boundedness condition (BCQ), if the associate Z-valued kernel $\Gamma = \Gamma_c$ defined by $\Gamma_{C}(\lambda,\mu) = C(t,s)(k,h), \lambda = (s,h), \mu = (t,k) \in S \times \mathcal{H}$ satisfies for a function $c_{n}(u)$, the condition (BCQ) from Definition 1, where we consider $\Gamma_{\mu} = \Gamma_{C_{\mu}}$;

(iii) the continuity condition (CC), if there exist the functions $c_p: S \to [0,\infty)$ and $\gamma_p: S \to \mathscr{P}_Z$ such that the conditions (CC) from the Definition 1 with Γ_c and Γ_{c_u} instead of Γ and Γ_u respectively take place.

Definition 3. The function $\mathcal{F}(\mathcal{H}, Z)$ -valued ϕ , defined on the * - semigroup S is called positive definite if the $\mathcal{F}(\mathcal{H}, \mathbb{Z})$ -valued associated kernel $C_{\phi}: S \times S \rightarrow \mathcal{F}(\mathcal{H}, \mathbb{Z})$ defined by $C_{\phi}(s,t) = \phi(t * s)$, s, t \in S is positive definite.

We say that such a function ϕ satisfies the boundedness conditions (BC), (BCQ), (CC) respectively, if the associated kernel C_{ϕ} satisfies the corresponding conditions from the Definition 2.

2. PSEUDO-HILBERT REPRESENTATIONS OF *- SEMIGROUPS

Given a Loynes Z-space \mathcal{H} , we can associate with it the algebra of the linear operators $\mathcal{L}(\mathcal{H})$ and the involutive sub-algebra $\mathcal{L}^*(\mathcal{H})$, respectively. Looking now at the different types of continuities in $\mathcal{L}(\mathcal{H})$, we can identify in a decreasing order the sub-algebras $\mathcal{C}(\mathcal{H})$, $\mathcal{C}\mathcal{C}(\mathcal{H})$, $\mathcal{B}(\mathcal{H})$.

Let us recall now that $[\mathcal{B}^*(\mathcal{H})]^* \subset \mathcal{B}^*(\mathcal{H})$. But it isn't sure that $[\mathcal{C}^*(\mathcal{H})]^* \subset \mathcal{C}^*$ (\mathcal{H}) . Concerning the sub-algebras, we can state the following:

Remark 1 The adjoint of any linear operator (if there is one) q--bounded remains q-bounded. More precisely, the following inclusion takes place for any Loynes Z-space.

$$[\mathcal{C}\mathcal{Q}^{*}(\mathcal{H})]^{*} \subset \mathcal{C}\mathcal{Q}^{*}(\mathcal{H}).$$
(3)

Indeed, if $T \in \mathcal{C} \mathscr{Q}^*(\mathcal{H})$ and $p \in \mathcal{P}_Z$, we shall denote by M_p the positive constant, for which $q_p(Th) \le M_p q_p(h), h \in \mathcal{H}$, and then applying the definition of q_p and the Schwarz type inequality from Consequence 1, the following inequalities occur successively for $q_p(T^*h) \neq 0$:

$$[q_{p}(T^{*}h)]^{2} = p([T^{*}h,T^{*}h]) = p([TT^{*}h,h]) \leq$$

$$\leq 2p([TT^{*}h,TT^{*}h])^{1/2} p([h,h])^{1/2} = 2q_{p}(TT^{*}h)q_{p}(h) \leq 2M_{p}q_{p}(T^{*}h)q_{p}(h),$$

hence $q_p(T^*h) \le 2M_p q_p(h)$, inequality which obviously will be also checked for h for which $q_{n}(T^{*}h)=0.$

According to Definition 2, (ii) the Z-valued associated kernel $\Gamma = \Gamma_c$ can be defined by $C(s,t)(h,k) = \Gamma_C(\lambda,\mu); \lambda = (t,k), \mu = (s,h) \in S \times \mathcal{H}$. In this case the positivity condition of C becomes:

$$\sum_{j,l=1}^{n} C(s_{l}, s_{j})(h_{l}, h_{j}) = \sum_{j,l=1}^{n} \Gamma_{C}(\lambda_{j}, \lambda_{l}) \ge 0$$

where $\lambda_j = (s_j, h_j), \lambda_l = (s_l, h_l)$. The kernel Γ_C is positive definite iff C is a \mathcal{AH}, Z -valued kernel on S× \mathcal{H} , and Γ_C will be linear in the second variable and anti-linear in the first variable.

Definition 4. Any algebraic morphism of a semigroup with values in one of the previously defined operator algebras on a certain Loynes Z-space is called a pseudo-Hilbert representation of the given semigroup. More precisely, if S is a semigroup, \mathcal{H} a Loynes Z-space and $\mathcal{G}(\mathcal{H})$ is one of the operator algebras (i.e. the position of \mathcal{G} is successively taken by \mathcal{L} , \mathcal{C} , \mathcal{CQ} , \mathcal{B}), then $\pi: S \to \mathcal{G}(\mathcal{H})$ is a representation on \mathcal{H} if

$$\pi(st) = \pi(s)\pi(t); \quad s, t \in S.$$
(4)

 π is called unital pseudo-Hilbert representation, $\mathcal{G}(\mathcal{H})$ -valued, if the semigroup S has unit e and π satisfies even more

$$\pi(e) = I_{\rm H}.\tag{5}$$

 π is called *-pseudo-Hilbert representation if the values of the morphism are in one of the algebras $\mathcal{G}^*(\mathcal{H})$ with $\mathcal{L}, \mathcal{C}, \mathcal{CQ}, \mathcal{B}$ in the position of \mathcal{G} , S is a *-semigroup and π satisfies

$$\pi(s^*) = \pi(s)^*, \quad s \in \mathbf{S}. \tag{6}$$

Now, we shall refer to the positivity and boundedness properties which are satisfied by the pseudo-Hilbert representations. These properties will be formulated for a representation π using the language of the $\mathcal{F}(\mathcal{H}, Z)$ –valued kernel C_{π} associated to π by

$$[C_{\pi}(s,t)](h,k) = [\pi(s)h,\pi(t)k]_{H}, \quad s,t \in S, \quad h,k \in \mathcal{H},$$
(7)

or if Γ_c is defined by,

$$[C_{\pi}(s,t)](h,k) = [\pi(t)h,\pi(s)k]_{H}, \quad s,t \in \mathcal{S}, \quad h,k \in \mathcal{H}.$$
(8)

Theorem 2.

(i) If π is a pseudo-Hilbert representation of a semigroup and C_{π} is the kernel of the associated sesquilinear Z-form, then the following assertions take place

- (a) The kernel C_{π} is positive definite;
- (b) If π has value in $\mathcal{C}(\mathcal{H})$, $\mathcal{C}(\mathcal{C}(\mathcal{H}))$ and $\mathcal{B}(\mathcal{H})$ respectively, then the associated kernel C_{π} satisfies the boundedness conditions (CC), (BCQ) and (BC) respectively.

(ii) If π is a *-pseudo-Hilbert representation of a *-semigroup, then

- (a) π is a positive definite operatorial function on a*-semigroup.
- (b) If π takes values in $\mathcal{C}^*(\mathcal{H})$, $\mathcal{C}^*\mathcal{Q}(\mathcal{H})$ and $\mathcal{B}^*(\mathcal{H})$ respectively, then for the associated operatorial kernel $\Gamma_{\pi}(s,t) = \pi(t^*s)$, $s, t \in S$ the boundedness conditions (CC), (BCQ) and (BC) respectively, are satisfied.

Proof: (i) If $s = (s_1, ..., s_n) \subset S$, $h = (h_1, ..., h_n) \subset \mathcal{H}$, the next calculus

$$\sum_{j,l=1}^{n} C_{\pi}(s_{j},s_{l})(h_{j},h_{l}) = \sum_{j,l=1}^{n} [\pi(s_{j})h_{j},\pi(s_{l})h_{l}] =$$
$$= [\sum_{j=1}^{n} \pi(s_{j})h_{j},\sum_{l=1}^{n},\pi(s_{l})h_{l}] \ge 0$$
(9)

or

$$\sum_{j,l=1}^{n} C_{\pi}(s_{j},s_{l})(h_{l},h_{j}) = \sum_{j,l=1}^{n} [\pi(s_{l})h_{l},\pi(s_{j})h_{j}]$$

shows that (a) takes place.

Further on, if we choose $u \in S$ with the above notations we obtain, by an easy calculus, the relation:

$$\sum_{j,l=1}^{n} C_{\pi}(us_{j}, us_{l})(h_{j}, h_{l}) = [\pi(u)\sum_{j=1}^{n} \pi(s_{j})h_{j}, \pi(u)\sum_{l=1}^{n} \pi(s_{l})h_{l}]$$

or

$$\sum_{j,l=1}^{n} C_{\pi}(us_{j}, us_{l})(h_{l}, h_{j}) = [\pi(u)\sum_{l=1}^{n} \pi(s_{l})h_{l}, \pi(u)\sum_{j=1}^{n} \pi(s_{j})h_{j}]$$

hence by applying successively the fact that $\pi(u)$ belongs to $\mathcal{C}(\mathcal{H})$, $\mathcal{C}\mathcal{C}(\mathcal{H})$ and $\mathcal{B}(\mathcal{H})$ respectively, it results that C_{π} satisfies in an appropriate manner the boundedness conditions (CC), (BCQ) and (BC) respectively.

We should mention that the functions, depending on $p \in \mathscr{P}_Z$ and $u \in S$ which will appear in the boundedness conditions for the kernel C_{π} are constant, that depend or not of $p \in \mathscr{P}_Z$, depending on the kind of continuity satisfied by the operator $\pi(u)$.

For example, in the last case the function $C(u) = || \pi(u) ||$ will be used.

(ii) has a similar demonstration, but now, the kernel is operatorial.

3. PROPAGATORS FOR POSITIVE DEFINITE KERNEL ON SEMIGROUPS

Definition 5.

(i) Let S be a multiplicative semigroup without unit and C a $\mathcal{F}(\mathcal{H}, Z)$ -valued positive definite kernel on S. A triple (\mathcal{K}, D, π) is named minimal propagator of C if \mathcal{K} is a Loynes Z- space, D: $S \to \mathcal{L}(\mathcal{H}, \mathcal{K})$ and π is a pseudo-Hilbert representation of S on $\mathcal{K}, \pi: S \to \mathcal{L}(\mathcal{K})$, such that:

$$(\mathcal{K}, D)$$
 is a minimal factorization of C , (10)

$$\pi(t)D(s) = D(ts), \qquad (s, t \in S).$$
(11)

(ii) Let S be a *-multiplicative semigroup and C a $\mathcal{F}(\mathcal{H}, Z)$ -valued positive definite kernel on S. A triple (\mathcal{K}, D, π) is called *-minimal propagator of C if \mathcal{K} is a Loynes Z-space, D: $S \to \mathcal{L}^*(\mathcal{H}, \mathcal{K})$ and π is a *-pseudo-Hilbert representation of S, $\pi: S \to \mathcal{L}^*(\mathcal{K})$ being such that the conditions (10) and (11) to be satisfied.

Lemma 2. Let (\mathcal{K}, D, π) be a minimal propagator of the $\mathcal{F}(\mathcal{H}, Z)$ -valued kernel C on the *-semigroup S. Then π is a *-representation of S if and only if C has the transfer property (CT).

Proof: If π is a *-representation of S, then for any s, t \in S and h, k \in \mathcal{H} , we have:

$$C(us,t)(h,k) = [D(t)h, D(us)k]_{\mathbf{K}} = [\pi(u)^* D(t)h, D(s)k]_{\mathbf{K}} =$$

$$= [D(u^{*}t)h, D(s)k] = C(s, u^{*}t)(h, k).$$

Conversely, if the kernel C has the transfer property, then

$$[\pi(t)D(s)h, D(r)h]_{K} = [D(ts)h, D(r)h]_{K} = C(r, ts)(h, h) =$$

$$= C(t^*r, s)(h, h) = [D(s)h, D(t^*r)h]_{\mathbf{K}}.$$

We shall deduce that there exists $\pi(t)^*$ and $\pi^*(t)D(r)h = D(t^*r)h$, $(h \in \mathcal{H}), r \in S$ thus $\pi(t)^* \in \mathcal{L}(\mathcal{K})$ by the fact that the space \mathcal{K} is generated by vectors having the form $\{D(s)h: s \in S, h \in \mathcal{H}\}$.

Now $\pi(t^*)D(r)h = D(t^*r)h$ and $\pi^*(t)D(r)h = D(t^*r)h$ that leads us to $\pi(t^*) = \pi^*(t)$ ($t \in S$) also by the form of \mathcal{K} .

4. DILATIONS FOR $\mathcal{F}(\mathcal{H}, Z)$ - VALUED KERNELS ON *-SEMIGROUPS

Next, we shall introduce the notion of minimal dilation (for the Hilbert model, see for example [13]).

Definition 6. The triple $(\mathcal{K}, \mathbb{R}, \pi)$ is a minimal dilation (*-dilation) of the kernel C:S×S $\rightarrow \mathcal{F}(\mathcal{H}, \mathbb{Z})$ if

 \mathcal{K} is a Loynes Z-space, $R \in \mathcal{L}(\mathcal{H}, \mathcal{K})$, $(R \in \mathcal{L}^*(\mathcal{H}, \mathcal{K}))$ and π is a representation (12)

(*-representation) of the semigroup (*-semigroup) S, in $\mathcal{L}(\mathcal{K})$ ($\mathcal{L}^{*}(\mathcal{K})$);

$$C(s,t)(h,k) = [\pi(t)Rh, \pi(s)Rk]_{\mathbf{K}}, \quad (s, t \in \mathbf{S}, h, k \in \mathcal{H}),$$
(13)

(for the case when *-dilation takes the form $C(s,t)=R^*\pi(t^*s)R$ (s, t \in S));

$$\mathcal{K} = \bigvee \{ \pi(s) R \ \mathcal{H} : s \in S \}.$$
(14)

Two such minimal dilations (\mathcal{K} , R, π) and (\mathcal{K} ', R', π ') are called gramian unitarily equivalents if there exists a gramian unitary operator U $\in \mathcal{C}(\mathcal{K}, (\mathcal{K}'))$ such that:

$$U\pi(s) = \pi'(s)U, \quad s \in S; \tag{15}$$

$$UR=R'.$$
 (16)

If the representation π , takes values in the subalgebras $\mathcal{C}(\mathcal{H})$, $\mathcal{C}\mathcal{Q}(\mathcal{H})$ and $\mathcal{B}(\mathcal{H})$ respectively, and R is in the subspace $\mathcal{C}(\mathcal{H}, \mathcal{K})$, $\mathcal{C}\mathcal{Q}(\mathcal{H}, \mathcal{K})$ and $\mathcal{B}(\mathcal{H}, \mathcal{K})$ respectively, the corresponding dilation (\mathcal{K} , R, π) will be named \mathcal{C} -, $\mathcal{C}\mathcal{Q}$ -, \mathcal{B} - minimal dilation of C.

Let S be a *-semigroup.

Let

$$[p(\sum_{j=1}^{n} C(s_{j},t_{j})(h_{j},h))]^{2} \leq C_{p}(h)p(\sum_{j,l=1}^{n} C(s_{j}^{*}t_{j},s_{l}^{*}t_{l})(h_{l},h_{j})),$$

$$(s_{1},...,s_{n} \in S, t_{1},...,t_{n} \in S, h_{1},...,h_{n},h \in \mathcal{H}), \text{ for any } p \in \mathcal{P}_{Z}.$$

$$(17)$$

Proposition 2. Let \mathcal{H} be a Loynes Z-space, and S a *-semigroup, and C a $\mathcal{F}(\mathcal{H}, Z)$ -valued kernel on S, which satisfies the inequality (17). Then:

(i) there exists a function $A: S \to \mathcal{F}(\mathcal{H}, Z)$ such that

$$C(s,t) = A(s^*t)$$
 (s, t \in S), (18)

(ii) the kernel C has the transfer property (CT).

Proof: The affirmation (ii) immediately results from (i), because

$$C(us,t) = A(s^*u^*t) = C(s,u^*t).$$

To check (i) we shall define A : S $\rightarrow \mathcal{F}(\mathcal{H}, Z)$ by

$$A(u) = \begin{cases} C(s,t), u \in S \cdot S; u = s^* t \\ 0, u \notin S \cdot S. \end{cases}$$

If $u = s_1^* t_1 = s_2^* t_2$ then taking into account that $C(s_1, t_1) = C(s_2, t_2)$ we obtain that A is correctly defined.

Indeed, by nothing k with h_1 and -k with h_2 from (17), for n = 2 it results that

$$[p(C(s_1,t_1)(k,h) - C(s_2,t_2)(k,h))]^2 \le C_p(h)p(\sum_{j,l=1}^2 C(s_j^*t_j,s_l^*t_l)(h_l,h_j)) =$$

= $C_p(h)p(\sum_{l,j=1}^2 C(u,u)(h_l,h_j)) = C_p(h)p(C(u,u)(k,k) - C(u,u)(k,k) - C(u,u)(k,k)) = 0,$

i.e. $p(C(s_1,t_1)(k,h) - C(s_2,t_2)(k,h)) = 0$ for any $p \in \mathcal{P}_Z$, therefore

 $C(s_1,t_1)(k,h) = C(s_2,t_2)(k,h)$ for any h, $k \in \mathcal{H}$, which completes the proof.

Having in mind that a function $A : S \to \mathcal{F}(\mathcal{H}, Z)$ is positive definite (i.e. it satisfies a boundedness condition respectively) if the kernel $C_A : S \times S \to \mathcal{F}(\mathcal{H}, Z)$ given by $C_A(s,t) = A(t^*s)$ (s, $t \in S$) is positive definite (i.e. it respectively satisfies the corresponding boundedness condition from Definition 3), the notion of *-minimal dilation introduced in Definition 6 makes sense for such functions.

It has a natural form. As it can be seen from:

Remark 2. If we consider a *-minimal dilation (\mathcal{K} , R, π) (according to Definition 6) of the kernel C_A associated to A, and if we observe that $A(s) = C_A(s, e)$, by applying the relation (13) for t = e, we obtain

$$A(s) = R^* \pi(s) R, \quad s \in S.$$

Therefore, it is justified for the *-minimal dilation (\mathcal{K} , R, π) of C_A , to be the *-minimal dilation for the function A. For these functions, the following take place:

Consequence 2.

(i) Let A be a $\mathcal{F}(\mathcal{H}, \mathbb{Z})$ -valued function on S. If A satisfies the boundedness conditions (BCQ) and if A is *-dilatable (i.e. has a *-minimal dilation), then there exists a function C_p : $\mathcal{H} \to \mathbb{R}_+$ such that for any $\overline{s} = (s_1, ..., s_n) \subset S$, $t = (t_1, ..., t_n) \subset S$, $\overline{h} = (h_1, ..., h_n) \subset \mathcal{H}$, $h \in \mathcal{H}$

$$\left[p(\sum_{l=1}^{n} A(s_{l})(h,h_{l}))\right]^{2} \leq C_{p}(h)p(\sum_{j,l=1}^{n} A(s_{l}^{*}s_{j})(h_{l},h_{j})).$$
(19)

(ii) Let S_0 be a sub-semigroup of *-semigroup S such that $S_0^* = S_0$ and A : S $\rightarrow \mathcal{F}(\mathcal{H}, Z)$ a positive definite function which satisfies the boundedness condition (BCQ). If there exists a Loynes Z-space \mathcal{K} , a function D : S $\rightarrow \mathcal{F}(\mathcal{H}, Z)$, a*-representation π of S on \mathcal{K} and an operator R $\in \mathcal{L}^*(\mathcal{H}, \mathcal{K})$ such that:

$$(\mathcal{H}, D, \pi)$$
 is a minimal propagator of C_A
 $D(s) = \pi(s)R \quad (s \in S_0)$
 $A(s)(h,k) = [Rh, \pi(s)Rk]_K \quad (s \in S_0, h, k \in \mathcal{H}),$

then there is a function $C_p: \mathcal{H} \to \mathbf{R}_+$ so that, for any finite sequences $s_1, ..., s_n \in S_0$ and $h_1, ..., h_n \in \mathcal{H}$, $h \in \mathcal{H}$ we have

$$\left[p(\sum_{l=1}^{n} A(s_{l})(h,h_{l}))\right]^{2} \leq c_{p}(h)p(\sum_{j,l=1}^{n} A(s_{l}^{*}s_{j})(h_{l},h_{j}))$$
(20)

for any $p \in \mathscr{P}_Z$. *Proof:* (i) Let $(\mathscr{K}, \mathbb{R}, \pi)$ be a *-minimal dilation of A. Then

$$[p(\sum_{l=1}^{n} A(s_{l})(h,h_{l}))]^{2} = [p(\sum_{l=1}^{n} [Rh,\pi(s_{l})Rh_{l}]_{K})]^{2} =$$

$$= [p([Rh,\sum_{l=1}^{n} \pi(s_{l})Rh_{l}]_{K})]^{2} \le 4p([Rh,Rh])p([\sum_{j=1}^{n} \pi(s_{j})Rh_{j},\sum_{l=1}^{n} \pi(s_{l})Rh_{l}]_{K}) =$$

$$= 4q_{p}^{2}(Rh) \cdot p(\sum_{j,l=1}^{n} [Rh_{j},\pi(s_{j}^{*}s_{l})Rh_{l}]_{K}) = 4q_{p}^{2}(Rh) \cdot p(\sum_{j,l=1}^{n} A(s_{j}^{*}s_{l})(h_{j},h_{l})),$$

i.e. exactly (19) if we take into account that A satisfies (BCQ) and use the fact that R is in $\mathcal{CQ}(\mathcal{H}, \mathcal{K})$. Therefore, for $R \in \mathcal{CQ}(\mathcal{H}, \mathcal{K})$ we have $p([Rh, Rh]) = q_p^2(Rh) \le M_p^2 p([h, h])$.

Considering $C_p(h) = 4M_p^2 p([h,h])$, we obtain exactly the desired inequality. (iii) is obvious from (i). **Consequence 3.** We notice that for a $\mathcal{G}(\mathcal{H})$ -valued positive definite function ϕ , (where \mathcal{G} can be \mathcal{C} , $\mathcal{C}\mathcal{Q}$ and \mathcal{B} respectively) there is an operator $R \in \mathcal{G}(\mathcal{H}, \mathcal{K})$ (where \mathcal{G} can be \mathcal{C} , $\mathcal{C}\mathcal{Q}$ and \mathcal{B} respectively) such that

$$\phi(t^*s) = R\pi(t)^*\pi(s)R, \quad t, s \in S,$$

is a *-semigroup with unit.

The following two theorems are analogue of the famous principal theorem of B. Sz.-Nagy [8] for pseudo-Hilbert spaces. We mention that there are many extensions of this result (see A. Weron, F.H. Szafraniec, J. Stochel [9-13]).

Theorem 3. Let Z be an admissible space in the Loynes sense, \mathcal{H} a pre-Loynes Z-space and S a *-semigroup with unit e.

If T is a $\mathcal{L}^*(\mathcal{H})$ – valued positive definite function on S, then there exists a pre-Loynes Z-space \mathcal{K}_0 , a *-representation $\pi : S \to \mathcal{L}^*(\mathcal{K}_0)$ i.e.

$$\pi(e) = I_{K_0}, \quad \pi(st) = \pi(s)\pi(t), \quad \pi(s)^* = \pi(s^*), \quad s, t \in S$$
 (21)

and an operator $R \in \mathcal{L}^*(\mathcal{H}, \mathcal{K}_0)$ such that

$$T(s) = R^* \pi(s)R, \quad s \in S.$$
⁽²²⁾

Moreover, \mathcal{K}_0 satisfies the minimality condition in the sense that it is algebraically generated by the vectors $\{\pi(s)Rh, s \in S, h \in \mathcal{H}\}$.

Proof: We consider the $\mathcal{F}(\mathcal{H}, Z)$ – valued kernel $B_{T(s,t)}$, s, t \in S associated with T(., .) and then the derived kernel $\Gamma_T = \Gamma_{B_T} : \Lambda \times \Lambda \to Z$ defined by

$$\Gamma_T(\lambda,\mu) = [h, T(s^*t)k], \quad \lambda = (s,h), \mu = (t,k) \in S \times \mathcal{H} = \Lambda.$$

From hypothesis, Γ_T will be a Z-valued kernel positive definite too. We denote by \mathcal{K}_0 the pre-Loynes space with the reproducing kernel, determined by the kernel Γ_T .

Using the condition given in Theorem 1, it is known that this \mathcal{K}_0 consists of all linear finite combinations of the Z-valued functions defined on $\Lambda = S \times \mathcal{H}$ having the form

$$\{\sum_{j=1}^{n} c_{j} \Gamma_{T}(\lambda_{j}, \cdot), n \in \mathbf{N}, c_{1}, ..., c_{n} \in \mathbf{C}, \lambda_{1}, ..., \lambda_{n} \in \Lambda\},$$
(23)

and its gramian is defined by:

$$[k_1, k_2]_{\mathbf{K}_0} = \sum_{j,l=1}^n c_j^1 c_l^2 \Gamma_T(\lambda_j^1, \lambda_l^2), \quad \text{where} \quad k_\nu = \sum_{j=1}^n c_j^\nu \Gamma_T(\lambda_j^\nu, \cdot), \nu = 1, 2.$$
(24)

Now, we construct the linear operator $R \in \mathcal{L}^*(\mathcal{H}, \mathcal{K}_0)$. For $h \in \mathcal{H}$ we consider $\lambda_h = (e, h) \in \Lambda$ and we define $Rh = \Gamma_T(\lambda_h, \cdot)$, $h \in \mathcal{H}$. An easy calculus shows that $R \in \mathcal{L}(\mathcal{H}, \mathcal{K}_0)$.

Indeed if $\mu = (t, h) \in \Lambda$, then:

=

$$[R(c_{1}h_{1}+c_{2}h_{2})](\mu) = \Gamma_{T}(\lambda_{c_{1}h_{1}+c_{2}h_{2}},\mu) = [c_{1}h_{1}+c_{2}h_{2},T(e^{*}t)h] =$$

= $c_{1}[h_{1},T(e^{*}t)h] + c_{2}[h_{2},T(e^{*}t)h] = [c_{1}\Gamma_{T}(\lambda_{h_{1}},\cdot) + c_{2}\Gamma_{T}(\lambda_{h_{2}},\cdot)](\mu)$
= $(c_{1}Rh_{1}+c_{2}Rh_{2})(\mu),$
 $(c_{1},c_{2} \in \mathbf{C}, h_{1},h_{2} \in \mathcal{H}).$

For the existence of the adjoint we proceed as below.

We take $k \in \mathcal{K}_0$ arbitrarily, $k = \sum_{j=1}^n c_j \Gamma_T(\lambda_j, \cdot), \ (c_j \in \mathbb{C}, \ \lambda_j = (s_j, h_j) \in \Lambda, \ j = 1, ..., n)$

and for $h \in \mathcal{H}$ applying the condition (24) we obtain successively

$$[Rh,k]_{K_0} = [\Gamma_T(\lambda_h,\cdot), \sum_{j=1}^n c_j \Gamma_T(\lambda_j,\cdot)] = \sum_{j=1}^n \overline{c}_j \Gamma_T(\lambda_h,\lambda_j) = \sum_{j=1}^n \overline{c}_j [h,T(e^*s_j)h_j] \mathcal{H} = [h, \sum_{j=1}^n c_j T(s_j)h_j]_{\mathbf{H}},$$

which show that R* exists and

$$R^{*}k = \sum_{j=1}^{n} c_{j}T(s_{j})h_{j}, \qquad k = \sum_{j=1}^{n} c_{j}\Gamma_{T}(\lambda_{j}, \cdot).$$
(25)

Now we define the representation $\pi : S \rightarrow \mathcal{L}^{*}(\mathcal{K}_{0})$ by

$$\pi(s)(\sum_{j=1}^{n} c_{j} \Gamma_{T}(\lambda_{j}, \cdot)) = \sum_{j=1}^{n} c_{j} \Gamma_{T}(\lambda^{s}_{j}, \cdot), \quad s \in \mathbf{S}$$
(26)

where $\lambda_j = (s_j, h_j) \in \Lambda$ and $\lambda^{s_j} = (s^* s_j, h_j)$.

It is obvious that $\pi(s) \in \mathcal{L}(\mathcal{K}_0)$ and it satisfies the first two relations from (21). For the last one we consider $k_v = \sum_{j=1}^n c_j^v \Gamma_T(\lambda_j^v, \cdot), v = 1, 2, \ \lambda_j^v = (s_j^v, h_j^v), \ j = 1, 2, ..., n$ and the product

$$[\pi(s)k_1, k_2]_{\mathbf{K}_0} = \sum_{j,l=1}^n c_j^1 \overline{c_l}^2 \Gamma_T(\lambda_j^{1,s}, \lambda_l^{2,s}) = \sum_{j,l=1}^n c_j^1 \overline{c_l}^2 [h_j^1, T(s_j^{1*} s^* s_l^2) h_l^2] =$$
$$= \sum_{j,l=1}^n c_j^1 \overline{c_l}^2 \Gamma_T(\lambda_j^1, \lambda_l^{2,s^*}) = [k_1, k_2^*]_{\mathbf{K}_0},$$

where $k_2^* = \sum_{l=1}^n c_l^2 \Gamma_T (\lambda_l^{2,s^*}).$

It results that there exists $\pi(s)^*$ and taking this into account and the definition (26), the following takes place

$$\pi(s)^* k_2 = k_2^* = \pi(s^*) k_2.$$

Now taking into account the definition of $\pi(s)$ and R, as well as the expression of R* (see the formula (25)) because $\lambda_h^s = (s^*, h)$ we have successively for any $h \in \mathcal{H}$:

$$R^* \pi(s) Rh = R^* \pi(s) \Gamma_T(\lambda_h, \cdot) = R^* \Gamma_T(\lambda_h^s, \cdot) = T(s)h,$$

s \in S, i.e. (22).

Because of $\sum_{j=1}^{n} c_j \Gamma_T(\lambda_j, \cdot) = \sum_{j=1}^{n} c_j \Gamma_T(\lambda_{h_j}^{s_j}, \cdot) = \sum_{j=1}^{n} c_j \pi(s_j) Rh_j$ results that the minimality

condition takes place.

Theorem 4. Let \mathscr{H} be a Loynes Z-space and S a*-semigroup with unit e. If T is a $\mathscr{C}^*(\mathscr{H})$ – valued positive definite function on *-semigroup S which satisfies the boundedness condition (Definition 2 and 3) respectively:

(BC) there exists a function $\rho : S \to [0,\infty)$ such that $\rho(u)B_T - (B_T)_u$ is positive definite for any $u \in S$, i.e.

$$\sum_{i,j=1}^{n} c_i \bar{c}_j [h_i, T(s_i^* u^* u s_j) h_j] \le \rho(u) \sum_{i,j=1}^{n} c_i \bar{c}_j [h_i, T(s_i^* s_j) h_j];$$

(BCQ) Γ_{B_T} satisfies (BCQ) i.e. for any $p \in \mathscr{P}_Z$, there exists a function $c_p : S \to [0,\infty)$ such that

$$p(\sum_{i,j=1}^{n} c_{i} c_{j} [h_{i}, T(s_{i}^{*} u^{*} us_{j})h_{j}]) \leq c_{p}(u) p(\sum_{i,j=1}^{n} c_{i} c_{j} [h_{i}, T(s_{i}^{*} s_{j})h_{j}]);$$

(CC) Γ_{B_T} satisfies (CC) i.e. for any $p \in \mathscr{P}_Z$, there exist $\gamma_p : S \to [0,\infty)$ and $c_p : S \to [0,\infty)$ so that

$$p(\sum_{i,j=1}^{n} c_{i} c_{j} [h_{i}, T(s_{i}^{*} u^{*} us_{j})h_{j}]) \leq c_{p}(u)\gamma_{p}(u)(\sum_{i,j=1}^{n} c_{i} c_{j} [h_{i}, T(s_{i}^{*} s_{j})h_{j}]);$$

for any $n \in \mathbb{N}$, $c_1, \dots, c_n \in \mathbb{C}$, $s_i, u \in S, h_i \in S, (i = \overline{1, n})$; then there exists a Loynes Z-space \mathcal{K} , a *-representation of S in $\mathcal{C}^*(\mathcal{K})$, an operator $R \in \mathcal{C}^*(\mathcal{H}, \mathcal{K})$ so that a relation like (22) holds.

Moreover, the boundedness conditions (BC), (BCQ) and (CC) of T are transferred to the representation π like this

(B)
$$[\pi(s)k, \pi(s)k] \le c(s)[k,k],$$

(CQ) $p([\pi(s)k, \pi(s)k]) \le c_p(s)p([k,k]),$
(C) $p([\pi(s)k, \pi(s)k]) \le c_p(s)\gamma_p(s)([k,k]),$

for any $s \in S$, $k \in \mathcal{K}$, which means that π takes values in $\mathcal{B}^*(\mathcal{K})$, $\mathcal{C}\mathcal{Q}^*(\mathcal{K})$ and $\mathcal{C}^*(\mathcal{K})$ respectively.

Proof: Obviously, he first part takes place taking \mathcal{K} as a Loynes Z-space with the reproducing kernel Γ_T , i.e. the functional completion of the pre-Loynes space \mathcal{K}_0 from Theorem 3.

Because T is a $\mathcal{C}^*(\mathcal{H})$ - valued positive definite function, which satisfies one of the boundedness conditions (BC), (BCQ) and (CC) respectively, T will be $\mathcal{B}^*(\mathcal{H})$ -, $\mathcal{C}\mathcal{Q}^*(\mathcal{H})$ - and $\mathcal{C}^*(\mathcal{H})$ - valued respectively. Now, by expressing the gramian [Rh, Rh] we obtain:

$$[Rh, Rh] = [\Gamma_{B_T}(\lambda_h, \cdot), \Gamma_{B_T}(\lambda_h, \cdot)] = \Gamma_{B_T}(\lambda_h, \lambda_h) = [h, T(e)h]$$

 $\lambda_h = (e, h)$. Moreover, by applying (22) for s = e we have:

 $[T(e)h,h] = [R^*Rh,h] = [Rh,Rh] \ge 0 \quad \text{for all } h \in \mathcal{H},$

therefore $T(e) \in \mathcal{C}^*_+(\mathcal{H})$. When $T(s) \in \mathcal{B}^*(\mathcal{H})$, we have $T(e) \in \mathcal{B}^*_+(\mathcal{H})$. It easily results that $R \in \mathcal{B}^*(\mathcal{H}, \mathcal{K})$. In the other three cases,

$$q_{p}^{\mathbf{K}}(Rh) = p^{2}([Rh, Rh]) = p^{2}([h, T(e)h]) \le 4q_{p}^{\mathbf{K}}(h)q_{p}^{\mathbf{K}}(T(e)h)$$

and using the fact that T(e) is $\mathcal{CQ}^*(\mathcal{H})$ - and $\mathcal{C}^*(\mathcal{H})$ - valued, we obtain that R is contained in $\mathcal{CQ}^*(\mathcal{H}, \mathcal{K})$ and $\mathcal{C}^*(\mathcal{H}, \mathcal{K})$ respectively, if we also show that R* is continuous with the condition (CC) for T. This fact is obvious from (25).

Now,

$$[\pi(s)k, \pi(s)k] = [\sum_{j=1}^{n} c_{j} \Gamma_{T}(\lambda_{j}^{s}, \cdot), \sum_{k=1}^{n} c_{k} \Gamma_{T}(\lambda_{k}^{s}, \cdot)] =$$

= $\sum_{j,k=1}^{n} c_{j} \overline{c}_{k} \Gamma_{T}(\lambda_{j}^{s}, \lambda_{k}^{s}) = \sum_{j,k=1}^{n} c_{j} \overline{c}_{k} [h_{j}, T((s^{*}s_{j})^{*}(s^{*}s_{k}))h_{k}] =$
= $\sum_{j,k=1}^{n} c_{j} \overline{c}_{k} [h_{j}, T(s^{*}_{j}ss^{*}s_{k})h_{k}],$

and

$$[k,k] = \sum_{j,k=1}^{n} c_j \overline{c}_k \Gamma_T(\lambda_j,\lambda_k) = \sum_{j,k=1}^{n} c_j \overline{c}_k [h_j, T(s_j^* s_k) h_k].$$

Then using the corresponding conditions (BC), (BCQ) and (CC) we obtain:

(B)
$$[\pi(s)k, \pi(s)k] \le C(s)[k,k], \text{ with } C(s) = \rho(s^*);$$

(CQ) $p([\pi(s)k, \pi(s)k]) \le C_p(s)p([k,k]), \text{ with } C_p(s) = c_p(s^*);$
(C) $p([\pi(s)k, \pi(s)k]) \le C_p(s)\gamma'_p(s)([k,k]), \text{ with } \gamma'_p(s) = \gamma_p(s^*).$

REFERENCES

- [1] Ciurdariu, L., Scientific Bulletin of the Politehnica University of Timisoara, Tom 49(63), 2, 52, 2004.
- [2] Ciurdariu, L., Gaspar, P., Journal of Science and Arts, 2, 225, 2009.
- [3] Gaspar, D., Gaspar, P., Analele Univ. de Vest Timisoara, Seria Matematica-Informatica, **XLIII** (2), 47, 2005.
- [4] Loynes, R.M., Transactions of the American Mathematical Society, 116, 167, 1965.
- [5] Loynes, R.M., *Proceedings of the London Mathematical Society*, **3**, 373, 1965.
- [6] Masani, P., *Propagators and dilations*, Proceeding of Conference "Probability Theory on Vector Spaces", Lecture Notes in Mathematics, **656**, Springer, 95, 1978.
- [7] Masani, P., SIAM Journal on Mathematical Analysis, 9(3), 414, 1978.
- [8] Riesz, F., Nagy, B. Sz., *Lecons d'analyse functionnelle*, Budapest, 1952.
- [9] Stochel, J., Bull. Pol. Acad. Sci., Ser. Math. Astronom. Phys., 28, 149, 1980.
- [10] Stochel, J., Studia Mathematica, 74, 293, 1982.
- [11] Stochel, J., Operator Theory: Advances and Applications, 11, 345, 1983.
- [12] Stochel, J., Szafraniec F.H., Operator Theory: Advances and Applications, 14, 261, 1984.
- [13] Stochel, J., Annales Polonici Mathematici, 48, 1, 1988.