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Abstract. In this paper we shall try to transpose the conditions of the existence of
propagators for kernel on *-semigroups, notion introduced by P. Masani [6]. We will start
with a few additional observations concerning *-representations and then we will present
some properties of propagators and dilations.
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1. INTRODUCTION

In order to prove the results of the following sections, we need to recall the next
definitions and properties. Let Z - be an admissible space and # a Loynes Z- space,
see [1, 4, 5].

Lemma 1. [1] If p is a continuous and monotone seminorm on Z, then

q,(h) = (p([h,h]))?

1S a continuous seminorm on J€.

Proposition 1. [1] If J€ is a pre-Loynes Z-space and &£, is a set of monotonous
(increasing) seminorms defining the topology of Z, then the topology of # is defined
by the sufficient and directed set of seminorms Q, ={q,|pe &, }.

Consequence 1. [1] Using the above notations, for every monotone seminorm p on Z the
following inequality holds:
p([h,k]) <2q,(h)q, (k) forall h, ke FE.

We say that an operator Te L(F, K) is in C(F, K) if and only if for every seminorm
qu on K, there exists a constant M />0 and a seminorm qLO on ¥ such that

q;(Thy<M g, (h),he %

Obviously, this condition will be equivalent with the condition: for every seminorm
pe &,,thereisaconstant M, >0 and a seminorm p, € &, such that

p([Th:Th]K) <M ,2) po([hah]H ), he %. (1)
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If we take above p, = p then we obtain the class CQ(F, K) and CE¥*(F, K)= CA(HK,

F)N L¥FE, K). Also, we recall that an operator Te L(F, K) is called gramian bounded (Te
B(FH, K)), if there exists a constant ¢ > 0 such that in the sense of order of Z, the following

inequality holds

[Th, Th]  <p [h,h],, ,he %. )

The study of Loynes Z-spaces with a given reproducing kernel was given in [3]
Theorem 4.1. We will state a similar result for an arbitrary Z-space. The notions of
reproducing kernel and sesquilinear Z-form are also given in [2].

Theorem 1. Let Z be an admissible space in the Loynes sense. For any positive definite
kernel I'. There 1s a unique Loynes Z-space €., which admits I" as a reproducing kernel.

Definition 1. Let Z be an admissible semigroup and I': SxS—Z a Z-valued kernel on S. T’
satisfies the boundedness condition, if there is a function c: S—[0,0) so that

cwl” -T, (BO)

is positive definite for all ue S, where I',(s,t) =T"(us,ut).
I' satisfies the g-boundedness condition (BCQ), if for every seminorm p € &, there
is a function C, :S— [0,00) such that

p(f]qEﬁL@pSu)quwp(§;q5ﬁ1%,%n (BCQ)

jk=1

for allneN, ¢ c C, s s, eS,ueSsS.

o -
I' will satisfy the continuity condition (CC), if for every seminorm p e &, , there are
two functionson S, y,:S— &, and c,:S—[0,00) such that

n

P2 €8T, (51,50) <€, W7, (0 X ¢,6,TS;.5,)) (CC)
j.k=1

jk=1
for allneN, ¢ c.eC, s s, €S,ues.

12°°*5 “n 12°°*5°n

Definition 2. If C is a $(#, Z) —valued kernel on the semigroup S, then C satisfies:
(1) the boundedness condition, if there exists a function p :S—[0,0) such that

p (u)C—-C, ispositive definite (u € S), (BO)

where C,(s,t)=C(us,ut).
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(1) g-boundedness condition (BCQ), if the associate Z-valued kernel I'=I. defined by
[c (4, 1) =C(t,5)(k,h),A =(s,h),u=(t,k) e Sx F satisfies for a function c,(u), the
condition (BCQ) from Definition 1, where we consider I, =TI ;

(iii) the continuity condition (CC), if there exist the functions ¢,:S—[0,0) and y,:S— &,
such that the conditions (CC) from the Definition 1 with T'. and T instead of I' and T,

respectively take place.

Definition 3. The function F(#, Z) —valued ¢, defined on the * — semigroup S is called
positive definite if the F(H#, Z) —valued associated kernel ¢, :s x5 —» F(H, Z) defined by

C,(s,1) = g(t*s), s, te S is positive definite.

We say that such a function ¢ satisfies the boundedness conditions (BC), (BCQ), (CC)
respectively, if the associated kernel C; satisfies the corresponding conditions from the
Definition 2.

2. PSEUDO-HILBERT REPRESENTATIONS OF *— SEMIGROUPS

Given a Loynes Z-space #, we can associate with it the algebra of the linear operators
L(F) and the involutive sub-algebra Lx(F), respectively. Looking now at the different types
of continuities in L(F), we can identify in a decreasing order the sub-algebras C(#€), CE(FE),
B(FE).

Let us recall now that [B * (F)]*< B * (F). But it isn’t sure that [C * (F)]*c € *
(#€). Concerning the sub-algebras, we can state the following:
Remark 1 The adjoint of any linear operator (if there is one) q--bounded remains g-bounded.
More precisely, the following inclusion takes place for any Loynes Z-space.

[C ©* (F6)]*C CE* (). 3)

Indeed, if Te€ @* (¥)and pe &,, we shall denote by M, the positive constant, for
which q,(Th) <M q,(h),h e %, and then applying the definition of g, and the Schwarz type
inequality from Consequence 1, the following inequalities occur successively for
q,(T"h)=0:

(A, (T"M]* = p(T"h,T"h]) = p([TT "h,h]) <
<2p([TT*h,TT"h])"* p(th,h)"* =24, (TT "h)g, (h) < 2M ,q, (T "hyg, (h),
hence q,(T "h) <2M g, (h), inequality which obviously will be also checked for h for which
q,(T"h)=0.
According to Definition 2, (i1) the Z-valued associated kernel I' =T, can be defined
by C(s,t)(h,k) =T (4, u); A = (t,k), £ =(s,h) € S x FE. In this case the positivity condition of
C becomes:

3 C(s1,8)(Nuh,) = 3 T (2, 4) 2 0
j.l=1

jl=1
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where  4; =(s;,h;),4, =(s;,h)). The kernel I is positive definite iff C is a AHK, Z)-
valued kernel on Sx #, and I'. will be linear in the second variable and anti-linear in the first

variable.

Definition 4. Any algebraic morphism of a semigroup with values in one of the previously
defined operator algebras on a certain Loynes Z-space is called a pseudo-Hilbert
representation of the given semigroup. More precisely, if S is a semigroup, F€ a Loynes Z-
space and G(F€) is one of the operator algebras (i.e. the position of ¢ is successively taken
by £, G, C&, B), then 7 :S — G(H) is a representation on F if

z(st) =xn(s)x(t); s,teS. 4)

7 1is called unital pseudo-Hilbert representation, G(F€)-valued, if the semigroup S has unit e
and 7 satisfies even more

zEe)=1,. (5)

7 1s called *-pseudo-Hilbert representation if the values of the morphism are in one of the
algebras G* (#) with £, €, C&, B in the position of G, S is a *-semigroup and 7 satisfies

n(s")=n(s)", seS. (6)

Now, we shall refer to the positivity and boundedness properties which are satisfied by
the pseudo-Hilbert representations. These properties will be formulated for a representation 7
using the language of the $(#, Z) —valued kernel C  associated to 7 by

[C,(s,D)](h,k) =[z(s)h, z(D)Kk],, s,te S, h,ke K, (7
orif I'. is defined by,
[C,(s,0)](h,k) =[z(t)h,z(s)k],, s,te S, h,ke Jt (8)

Theorem 2.
(1) If 7 1s a pseudo-Hilbert representation of a semigroup and C_ is the kernel of the

associated sesquilinear Z-form, then the following assertions take place
(a) The kernel C _is positive definite;
(b) If 7 has value in C(F€), CEQ(F) and B(F€) respectively, then the associated kernel C

satisfies the boundedness conditions (CC), (BCQ) and (BC) respectively.
(11) If 7 1s a *-pseudo-Hilbert representation of a *-semigroup, then
(a) mis apositive definite operatorial function on a*-semigroup.

(b) If ztakes values in C¥*(F), C*Q(F€) and B*(FE) respectively, then for the associated
operatorial kernel I'_(s,t) = z(t"s), s, t e S the boundedness conditions (CC), (BCQ)
and (BC) respectively, are satisfied.

Proof: (i) If s =(S,,...,5,) =S, h=(h,,...h ) c %, the next calculus
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>C.(s,.5)(h,.h) = 3 [x(s)h,, 7(s,)h, ] =

jl=1 j,l=1

=[§7z(sj)hj,§,n(s,)hl]zo )
or
3C.(5,9(hy) = 3 (x(s)h, 75y
shows that (a) takes place.

Further on, if we choose ue S with the above notations we obtain, by an easy calculus,
the relation:

ZI:C;:(USJ' ,us))(h;,h)) = [”(U)Z”(Sj)hj a”(u)lzﬂ(5| ]
jl=1 j=1 =1
or

_Z,Cn(usj ,usy)(hy,hy) = [”(U)IZ”(S| h, a”(u)zﬂ(sj)hj]

j.1=1 =1 j=1
hence by applying successively the fact that z(u)belongs to C(F), CE(F) and B(F)
respectively, it results that C_satisfies in an appropriate manner the boundedness conditions
(CC), (BCQ) and (BC) respectively.

We should mention that the functions, depending on pe &, and ue S which will
appear in the boundedness conditions for the kernel C_are constant, that depend or not of
pe &,,depending on the kind of continuity satisfied by the operator 7 (u).

For example, in the last case the function C(u)=|| 7z(u) || will be used.

(1) has a similar demonstration, but now, the kernel is operatorial.

3. PROPAGATORS FOR POSITIVE DEFINITE KERNEL ON SEMIGROUPS

Definition 5.

(1) Let S be a multiplicative semigroup without unit and C a (€, Z) —valued positive definite
kernel on S. A triple (KX, D, 7 ) is named minimal propagator of C if & is a Loynes Z- space,
D:S — L(¥#, K) and 7 is a pseudo-Hilbert representation of S on K, 7:S —» L(K), such
that:

(A D) is a minimal factorization of C, (10)

z(t)D(s) = D(ts), (s,tes). (11)

(i1) Let S be a *-multiplicative semigroup and C a #(F, Z)-valued positive definite kernel on
S. A triple (X, D, 7) is called *-minimal propagator of C if £ 1is a Loynes Z-space,

D:S — L£¥(#, K) and r is a *-pseudo-Hilbert representation of S, 7:S —» L¥(K) being
such that the conditions (10) and (11) to be satisfied.
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Lemma 2. Let (X, D, 7) be a minimal propagator of the F(¥, Z)-valued kernel C on the
*-semigroup S. Then 7 is a *-representation of S if and only if C has the transfer property

(CT).
Proof: If =z isa *-representation of S, then for any s, te S and h, ke #, we have:
C(us,t)(h,k) =[D(t)h,D(us)k], =[z(u)"D(t)h,D(s)k], =
=[D(u"t)h,D(s)k]=C(s,u’t)(h,k).
Conversely, if the kernel C has the transfer property, then

[z(t)D(s)h, D(r)h], =[D(ts)h, D(r)h], = C(r,ts)(h,h) =
= C(t'r,s)(h,h) =[D(s)h, D(t*r)h],..

We shall deduce that there exists 7z(t)* and z"(t)D(r)h=D(t'r)h, (he ), re S
thus z(t)" € L(K) by the fact that the space K is generated by vectors having the form
{D(s)h: se S, he %}.

Now 7z(t")D(r)h=D(t"r)hand 7" (t)D(r)h = D(t*r)h that leads us to z(t") = 7" (t)
(te S) also by the form of K.

4. DILATIONS FOR #(J¢, Z)- VALUED KERNELS ON *-SEMIGROUPS

Next, we shall introduce the notion of minimal dilation (for the Hilbert model, see for
example [13]).

Definition 6. The triple (X, R, x) is a minimal dilation (*-dilation) of the kernel
C:SxS— #(8¢, 72) if

K is a Loynes Z-space, Re L(F, K), (Re L¥(FE, K)) and r is a representation  (12)
(*-representation) of the semigroup (*-semigroup) S, in L(K) (L*(K));
C(s,t)(h,k) =[7#(t)Rh, 7(S)RK],, (s,te S, h,ke J), (13)
(for the case when *-dilation takes the form C(s,t)}=R* z(t"S)R (s, te S));
K= v{r(s)R Jt:se S}. (14)

Two such minimal dilations (X, R, 7 ) and (K’, R’, 7’) are called gramian unitarily
equivalents if there exists a gramian unitary operator Ue C(X, (K’) such that:

Urx(s)= n’(s)U, seS; (15)

UR=R’. (16)
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If the representation 7 , takes values in the subalgebras C(F€), CR(F) and B(F€)
respectively, and R is in the subspace C(#, K), CQ(F, K) and B(H, K) respectively, the
corresponding dilation (X, R, 7) will be named C-, CR-, B- minimal dilation of C.

Let S be a *-semigroup.
Let

[PCC(s; )0y )P < Cy (MR TS5t hy). (17)

(S;5.-»S, €S,t,,...,t, €S,h,,....h ,he ), forany pe P,.

Proposition 2. Let F€ be a Loynes Z-space, and S a *-semigroup, and C a F(H, Z)-valued
kernel on S, which satisfies the inequality (17). Then:
(1) there exists a function A : S— (¢, Z) such that

CG,)=AGS't) (. teS), (18)

(i1) the kernel C has the transfer property (CT).
Proof: The affirmation (ii) immediately results from (i), because

C(us,t) = A(s"u’t) =C(s,u’t).
To check (i) we shall define A : S— A Z) by

AU) = C(s,t),ueS-S;u=s"t
O,uegS-S.

If u=st =s,t, then taking into account that C(s,t,) = C(s,,t,) we obtain that A is
correctly defined.
Indeed, by nothing k with h, and —k with h, from (17), for n = 2 it results that

[P(C(s,,t)(k, 1) = C(s,, 1, )(k, h)T* < Cp(h)p(i C(sity,sit)(hy,hy)) =
j,l=1

=C,(h P(éc(u,u)(hl -h;) =C (M) p(C(u,u)(k, k) = C(u,u)(k, k) -

—C(u,u)(k,k) +C(u,u)(k,k)) =0,

re. p(C(s,,t)(k,h)—C(s,,t,)k,h)=0
forany pe &,, therefore
C(s,,t,)(k,h) =C(s,,t,)(k,h) for any h, ke F, which completes the proof.

Having in mind that a function A : S— F(#, Z) is positive definite (i.e. it satisfies a
boundedness condition respectively) if the kernel C,:SxS—> F(IJ, Z) given by
C.(s,t) = A(t"s) (s, te S) is positive definite (i.e. it respectively satisfies the corresponding
boundedness condition from Definition 3), the notion of *-minimal dilation introduced in

Definition 6 makes sense for such functions.
It has a natural form. As it can be seen from:
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Remark 2. If we consider a *-minimal dilation (¥, R, 7) (according to Definition 6) of the
kernel C, associated to A, and if we observe that A(s) =C,(s,e), by applying the relation
(13) for t = e, we obtain

A(Ss)=R*'z(s)R, seS.

Therefore, it is justified for the *-minimal dilation (X, R,7) ofC,, to be the
*-minimal dilation for the function A. For these functions, the following take place:

Consequence 2.
(i) Let A be a F(J Z)-valued function on S. If A satisfies the boundedness conditions

(BCQ) and if A is *-dilatable (i.e. has a *-minimal dilation), then there exists a functionC, :
Jt— R, such that forany s =(s,,...,s,) =S, t=(t,,...t ) =S, h=(h,,..,h.)c H he #

[P AG(LBP <C,y (MP(X ASS, (NN (19)

(i) Let S, be a sub-semigroup of *-semigroup S such that S,” =S, and A : S— F(H, Z) a
positive definite function which satisfies the boundedness condition (BCQ). If there exists a
Loynes Z-space K, a function D : S— #(F, Z), a*-representation 7 of S on K and an
operator Re L¥(#, K) such that:

(#, D, ) is a minimal propagator of C,
D(s)= 7 (s)R  (se S,)
A(s)(h,k) = [Rh,z(s)RK], (se S,, h, ke J6),

then there is a function C : ¥ — R, so that, for any finite sequences §,,...,S, € S, and
h,,....h, € #, h € € we have

[PCEAG)(LI P ¢, (MR AGSs; )(h.h))) (20)

forany pe &,.
Proof: (i) Let (X,R, 7) bea *-minimal dilation of A. Then

[PCY A (AT =[ (Y[R, 7(5)RN ] ) =
= [p(RN. Y. 2(s)RN J)T <4 p(IR,RA]) p(LY. w(s)RN,. Y (s R T) =

— 402 (Rh) - p(Y [Rh,.z(s:5 )R] ) = 42 (Rh)- p(> A(Ss)(h,.h ),

isl=1 j.l=1
i.e. exactly (19) if we take into account that A satisfies (BCQ) and use the fact that R is in
CQ(F€, K). Therefore, for R € CE(FE, K) we have p([Rh,Rh]) = qﬁ(Rh) <M 3 p([h,h]).
Considering C,(h) =4M ; p([h,h]), we obtain exactly the desired inequality.

(111) 1s obvious from (1).
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Consequence 3. We notice that for a G(F€)- valued positive definite function ¢, (where ¢ can

be €, CE and B respectively) there is an operator R € Q(F, K) (where ¢ can be C, C& and 3B
respectively) such that

#(t's)=Rz(t)' z(S)R, tseS,

is a *-semigroup with unit.

The following two theorems are analogue of the famous principal theorem of B. Sz.-
Nagy [8] for pseudo-Hilbert spaces. We mention that there are many extensions of this result
(see A. Weron, F.H. Szafraniec, J. Stochel [9-13]).

Theorem 3. Let Z be an admissible space in the Loynes sense, € a pre-Loynes Z-space and
S a *-semigroup with unit e.

If T is a L¥(F€) — valued positive definite function on S, then there exists a pre-Loynes
Z-space K, a *-representationr : S— L¥(H ) 1.e.

mey=ly,, #a)=x)zt), z(s) =xn("), s teS (21)
and an operator Re L¥( € ,K ) such that
T(s)=R'z(s)R, seS. (22)

Moreover, J, satisfies the minimality condition in the sense that it is algebraically

generated by the vectors { 7 (s)Rh, se S, he .
Proof: We consider the (€, Z) — valued kernel Br(sy)» 8, t € S associated with T(. , .) and

then the derived kernel I, =Ty : Ax A — Z defined by
Ty (A ) =[N T(SDK], A =(s,h), 1= (k) e Sx F=A.

From hypothesis, I'; will be a Z-valued kernel positive definite too. We denote by K,
the pre-Loynes space with the reproducing kernel, determined by the kernel I7 .

Using the condition given in Theorem 1, it is known that this &, consists of all linear
finite combinations of the Z-valued functions defined on A = S x € having the form

{36, (A, EN, Gy € C, Avndy €A, 23)
it

and its gramian is defined by:

[k, Ky Ik, = jlzzlc}cfrT (2;,4), where k, = J_z:lcm (A]),v =12 (24)

Now, we construct the linear operator Re L*(# , K ). For h € # we consider
A, =(e,h) € Aand we define Rh = T3 (4,,), h € . An easy calculus shows that Re L(%,
K,).

Indeed if x = (t,h) € A, then:
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[R(C,hy +¢,0,)1(4) = T3 (A sy, » 4) =[Gy +C,0,, T (€7D] =
= ¢,[h, T(e"Oh]+c,[h,, T(e"Hh] =[c,[F (4, ) +C,I7 (4, )1(w) =
= (¢,Rh, +c,Rh,)(w),

(c,,c, €C, h,h, e ).

For the existence of the adjoint we proceed as below.

We take k € K, arbitrarily, k :iCjFT (4;,), (¢; €C, 4;=(s;,h)) e A, j=1,...,n)
i=1

and for h e J# applying the condition (24) we obtain successively
[RA,Kli, =[T7 (2 X¢,T7 (2401 = 20T (A, 4) = 25T (€5 )y ] 5 =
1= 1= 1=

:[h,%ch(sj)hj]H,

which show that R* exists and
R*k:écﬁ(sj)hj, k:écjn(ﬂ,j,-). (25)
Now we define the representationr : S— L¥( K ) by
ﬂ(s)(éc Ty (4.) = gc T (A5, seS (26)

where A, =(s;,h;)e A and A°j =(s’s;,h)).
It is obvious that 7z(s) e L( ) and it satisfies the first two relations from (21). For

the last one we consider k, = > ¢{T; (4],),v =12, 4] =(s],h]), j=12,..,n and the product
j=1

n 2 s s n 2 P
[7(s)k;, K, 1, = ;lcl.cd} (A7, A=Y ciei[h,T(s{s"s})h?]=
J,:

] - ]
ji=t

n —2 o* %
= _Z,]C}m I (/Ilj’/llz, ):[klakZ]Ko’
J,:
where k; = IZ::CfFT (2.

It results that there exists 7(s)” and taking this into account and the definition (26),
the following takes place
7(s)'k, =k, =z(s)k,.

Now taking into account the definition of 7(S) and R, as well as the expression of R*

(see the formula (25)) because A; = (s",h) we have successively for any he J#:
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R*7(s)Rh = R* () Ty (4,,) = R*T; (45,) = T,
se S, i.e. (22).
Because of Zn:CjFT (A;») = Zn:CjFT (/1;11_ ;) = Zn:Cjﬂ'(Sj )Rh; results that the minimality
= = =

condition takes place.

Theorem 4. Let A be a Loynes Z-space and S a*-semigroup with unit e. If T is a C*(F) —
valued positive definite function on *-semigroup S which satisfies the boundedness condition
(Definition 2 and 3) respectively:

(BC) there exists a function p : S— [0,0) such that p(u)B; —(B;), 1s positive definite for

anyu € S, i.e.

> celh, T(su usphy 1< p@) Y ¢icifhy, T(s'sph;

i,j=l1 i,j=I1
(BCQ) T, satisfies (BCQ) i.e. forany pe &, there exists a function ¢, : S— [0,0) such
that

P(X. ¢, T(s/u’us Dh; D < €, (WP €3N, T(s/s)h; )
i,j= i,j=

(CC) T, satisfies (CC) i.e. forany pe &, there exist y, :S —[0,00) and C,,:S—[0,00)
so that

p(. ¢ ilh, T(s;u"us h, 1) < ¢, (W), (WX €, ¢iTh, T(s'sh,

i,j=1 i,j=1

foranyn € N, c,,....c, €C, s,,ueS,h, €S,(i= I,_n); then there exists a Loynes Z-space X, a

*-representation of S in C*(K), an operator Re C*( F, K) so that a relation like (22) holds.
Moreover, the boundedness conditions (BC), (BCQ) and (CC) of T are transferred to
the representation 7 like this
(B) [7(s)k, z(s)k] < c(s)[k. k],
(CQ)  p([z(s)k, z(s)k]) < c,(s)p([k,k]),

©) p([z(s)k, Z(s)k]) < €, (8)7, (S)([K, KD,

for any seS, keX, which means that 7 takes values in B*(K), CE*(K) and C*(K)
respectively.

Proof: Obviously, he first part takes place taking K as a Loynes Z-space with the reproducing
kernel I, i.e. the functional completion of the pre-Loynes space J, from Theorem 3.

Because T is a C*(H )- valued positive definite function, which satisfies one of the
boundedness conditions (BC), (BCQ) and (CC) respectively, T will be B*(H#)-, CE*(H)- and
C*(AH- valued respectively. Now, by expressing the gramian [Rh, Rh] we obtain:

[Rh> Rh] = [FBT (ih ")')FBT (;i’h ’)] = FBT (;Lh’ﬂ“h) = [h,T(E)h] )

A, = (&,h). Moreover, by applying (22) for s = e we have:
[T(e)h,h]=[R*Rh,h]=[Rh,Rh] >0 forall he #
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therefore T(e)e €’ (A). When T(s)e B*(H ), we have T(e)e B’ (A). It easily results that
Re B*(H K). In the other three cases,

g (Rh) = p*([Rh. Rh]) = p* ([T (e)h)) < 4q" (¥ (T ()h)
and using the fact that T(e) is CE*(A)- and C*(A)- valued, we obtain that R is contained in
Ca*(H, K) and C*(HA K) respectively, if we also show that R* is continuous with the

condition (CC) for T. This fact is obvious from (25).
Now,

[k, 2(S)K] = [3 ¢, Ty (45,026, I (4.)] =
j=1 k=1

= 3 ¢,y (A, 4) = 2 ¢, culh, T((S7s,) ("8 Hh, ] =
j.k=1 k=1
= i ¢, c[h;, T(sss"s,h, ],
and |
(kK= ) ¢,CiTs (4,40 = 2 ¢, Celh,, T(s]50h, ]
k=1 j.k=1
Then using the corresponding conditions (BC), (BCQ) and (CC) we obtain:
(B) [7(s)k, 7(S)k] < C(s)[k,k], with C(s) = p(s7);
(CQ) p([z(s)k, 7(s)k]) < C,(s)p([k.k]), with C (s)=c,(s");
©) P([7($)k, Z($)K]) < C, (8)7, (S)([K,K]), with ,(5) = y,(s").
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