A NOTE ON RINGS

VOLETY V.S. RAMACHANDRAM ${ }^{1}$

Manuscript received: 22.08.2011; Accepted paper: 30.08.2011
Published online: 01.09.2011

Abstract

In this paper we have mainly obtained some properties satisfied by the invertible and complement elements of a ring R with unity. We obtained that the complement of an idempotent element in a ring is idempotent. We obtained a necessary and sufficient condition for an element in a ring R to be invertible.

Keywords: Ring, Ring with unity, Boolean Ring, complement of an element, invertible element and idempotent element.

AMS subject classification: 13XX.

We start with the following Preliminaries:
Definition 1: A ring R is a Boolean ring if $a^{2}=a \quad \forall a \in R$.
Definition 2: In a ring R with unity an element 'a' has complement [2] if there exist an element ' b ' in R such that $a+b=1$.

Definition 3: In a commutative ring R with unity an element ' a ' is invertible [2] if there exist an element ' b ' in R such that $\mathrm{a} . \mathrm{b}=1$.

First we start with the following theorem.
Theorem 1: In a ring ($\mathrm{R},+$, .) with unity, $a \in R$ has complement if ' a ' is invertible.
Proof: Suppose $a \in R$ is invertible. There exists $b \in R$ such that $a \cdot b=b . a=1$ $a+a .(b-1)=a+a . b-a .1=a+1-a=1$, which proves the theorem.

Remark: The converse of the above theorem need not be true.
For example in the ring of integers ($\mathrm{Z},+$, .) every element has complement but some elements have no inverse.

Theorem 2: In a ring ($\mathrm{R},+$, .) with unity, the complement of an idempotent element in R is an idempotent element in R .

Proof: Let ' a ' be an idempotent element in R and ' b ' be its complement.

$$
b \cdot b=(1-a) \cdot(1-a)=1-a-a+a \cdot a=1-a-a+a=1-a=b
$$

Theorem 3: In a Boolean ring [1] with unity, $a+b=1 \Rightarrow a . b=0$
Proof: Let R be a Boolean ring with unity.

$$
\begin{aligned}
a+b=1 & \Rightarrow b=1-a \\
& \Rightarrow a \cdot b=a \cdot(1-a) \Rightarrow a \cdot b=a-a \cdot a \Rightarrow a \cdot b=a-a \Rightarrow a \cdot b=0
\end{aligned}
$$

[^0]Theorem 4: In a commutative ring R with unity the following conditions are equivalent.
$a \in R$ is invertible
The equations $\mathrm{a} . \mathrm{x}=\mathrm{b}$ and $\mathrm{y} . \mathrm{a}=\mathrm{b}$ have unique solution $\forall x, y, b \in R$
Proof: Suppose (1) hold.
There is an element $i \in R$ such that $\quad a . i=i . a=1$.
Consider the equation $a x=b$

$$
\Rightarrow i .(a x)=i . b \Rightarrow(i . a) \cdot x=i . b \Rightarrow 1 . x=i . b \Rightarrow x=i . b
$$

Hence the equation $\mathrm{a} \cdot \mathrm{x}=\mathrm{b}$ has a solution in the ring R .
If possible $a . r=a . s \quad$ for some r, s in R.
$a . r=a . s \Rightarrow i .(a . r)=i .(a . s) \Rightarrow(i . a) . r=(i . a) . s \Rightarrow r=s$
Suppose (2) hold.
The equation $\mathrm{a} . \mathrm{x}=\mathrm{b}$ has unique solution means there is a unique element say ' q ' in R such that $\mathrm{a} . \mathrm{q}=1$ so that ' q ' is the inverse of ' a ' in R .

Lemma 5: In a ring R with unity if ' a ' and ' b ' are invertible in R then $(a . b)^{-1}=b^{-1} \cdot a^{-1}$ Proof: a.b. $\left(b^{-1} a^{-1}\right)=a \cdot\left(b b^{-1}\right) \cdot a^{-1}=a \cdot 1 \cdot a^{-1}=a \cdot a^{-1}=1$.

Theorem 6: If R and R^{\prime} are two rings with unity elements, f is a homomorphism from R to R^{\prime} then the following are true:
' a ' is idempotent in R then $\mathrm{f}(\mathrm{a})$ is idempotent in R^{\prime}.
' a ' is invertible in R then $f(a)$ is invertible in R '.
' a ' has complement in R then $\mathrm{f}(\mathrm{a})$ has complement in R '.
Proof: It is trivial.
Theorem 7: In a commutative ring R with unity the inverse of an idempotent element (if exists) is idempotent.

Proof: Let ' a ' be an idempotent element in the ring R and ' b ' be its inverse.
$a . b=1 \Rightarrow(a . b)^{2}=1 \Rightarrow a^{2} \cdot b^{2}=1 \Rightarrow a \cdot b^{2}=1 \Rightarrow b \cdot a \cdot b^{2}=b \Rightarrow 1 \cdot b^{2}=b \Rightarrow b^{2}=b$
Hence ' b ' is idempotent in R.

REFERENCES

[1] Herstein, I.N., Topics in Algebra, Wiley India (P) Ltd, $2^{\text {nd }}$ Edition, 2006.
[2] Srinivas, K.V.R., Ramachandram, V.V.S., International Journal of Mathematics Research, 3(1), 53, 2011.
[3] Ashraf, M., Quadri, M.A., Zelinsky, D., Amer. Math.Monthly, 95(4), 336, 1988.
[4] Gupta, R.N., Math. Student, 39, 184, 1971.
[5] Yuanchun, G., Acta Scientiarum Naturalium Universitatis Jilinensis, 3, 11, 1983.

[^0]: ${ }^{1}$ B.V.C. College of Engineering, Rajahmundry. 533210, Andhra Pradesh, India. E-mail: vvsrch@yahoo.com.

