X-INDOMINABLE GRAPHS

YANAMANDRAM B. VENKATAKRISHNAN ${ }^{1}$, VENKATA SWAMINATHAN ${ }^{2}$

Manuscript received: 24.11.2012; Accepted paper: 07.01.2012;
Published online: 10.03.2012.

Abstract

An X-dominating set which is also X-independent is called an X-independent X-dominating set. A graph is said to be X-indominable if $X(G)$ can be partitioned into X independent X-dominating sets, otherwise G is called X-indominable. We define X indominable number and give its bipartite version.

Keywords: X-dominating sets, X-independent sets, X-indominable number.

1. INTRODUCTION

Bipartite theory of graphs was introduced by Stephen Hedetniemi and Renu Laskar in their two papers [3,4] in which concept in graph theory have equivalent formulations as concepts for bipartite graphs. One such formulation is the concept of X-dominating sets and X-independent sets of bipartite graphs.

Cockayne E.J and Hedetniemi S.T introduced the concept of disjoint independent dominating sets [2] in graphs. This concept was further studied in [1] by Acharya B.D. and Walikar H.B. Here, we initiate the study of X-indominable graphs. Interesting results are obtained which exhibit the method of embedding non X-indominable graphs into Xindominable graphs. We also introduce a new parameter called X -indominable number, which is bipartite version of indominable number of a graph.

2. PRELIMINARIES

A partition P of the vertex set called indomatic partition [1], if each element is independent dominating set. If $\Pi(G)$ denotes the set of all indomatic partition of G then the number $\mathrm{b}(\mathrm{G})=\max ^{\Pi(G)}|P|$ is called indomatic number of G .

We consider only bipartite graphs $\mathrm{G}=(\mathrm{X}, \mathrm{Y}, \mathrm{E})$. Two vertices u and v are X -adjacent if u and v are adjacent to the same vertex y in Y. A subset S of X is called a X-dominating set[3] if every vertex in X-S is X-adjacent to a vertex of S. The minimum cardinality of a Xdominating set is called the X -domination number of a graph G and is denoted by $\gamma_{X}(G)$.

A subset D of X is called a X -independent set[4] if any two vertices in D are not X adjacent. The maximum cardinality of a X -independent set is called the X -independence number of a graph G and is denoted by $\beta_{X}(G)$.

A X-domatic partition of G is a partition of X, all of whose elements are X -dominating sets in G . The X -domatic number of G is the maximum number of classes of a X -domatic partition of G . The X-domatic number of a graph G is denoted by $d_{X}(G)$.

[^0]
3. X-INDOMINABLE GRAPHS

An X-dominating set which is also X -independent is called an X -independent X dominating set. A graph is said to be X -indominable if $\mathrm{X}(\mathrm{G})$ can be partitioned into X independent X -dominating sets, otherwise G is called X -indominable.

Example: The partition $\left\{\left\{\mathrm{x}_{1}, \mathrm{X}_{3}, \mathrm{x}_{5}\right\},\left\{\mathrm{x}_{2} \cdot \mathrm{x}_{4}, \mathrm{x}_{6}\right\}\right\}$ are X -independent sets which are also X -dominating sets. Therefore, $\mathrm{G}=\mathrm{C}_{12}$ given below is X-indominable.

Fig. 1. Cycle \mathbf{C}_{12}.
Example: In the graph $G=C_{10}$ maximum X-independent set are $\left\{\mathrm{x}_{1}, \mathrm{x}_{3}\right\},\left\{\mathrm{x}_{1}, \mathrm{x}_{4}\right\}$, $\left\{\mathrm{x}_{2}, \mathrm{x}_{4}\right\},\left\{\mathrm{x}_{2}, \mathrm{x}_{5}\right\}$ and $\left\{\mathrm{x}_{3}, \mathrm{x}_{5}\right\}$. These are also X -dominating set and $\gamma_{X}(G)=2$. Since $|X|=5$, X cannot be partitioned into X -independent X -dominating sets. Therefore, $\mathrm{G}=\mathrm{C}_{10}$ is non X indominable.

Theorem 3.1: If G is not X -indominable then there exists a X -indominable graph H containing G as an induced subgraph.

Proof: Let G be a non X -indominable graph with $|X|=n$. Let $\mathrm{X}=\left\{\mathrm{u}_{1}, \mathrm{u}_{2}, \ldots, \mathrm{u}_{\mathrm{n}}\right\}$. Add vertices $\mathrm{v}_{1}, \mathrm{v}_{2}, \ldots, \mathrm{v}_{\mathrm{n}}$ to X such that every vertex u_{i} is X -adjacent to vertices $\mathrm{v}_{\mathrm{j}}, \mathrm{i} \neq \mathrm{j}, 1 \leq \mathrm{i} \leq \mathrm{n}$. $\left\{u_{i}, v_{i}\right\} i=1$ to n forms X-independent X-dominating sets. Therefore, H is X-indominable and $\mathrm{X}(\mathrm{H})$ can be partitioned into X -independent X -dominating sets.

Corollary 3.2: The class of X-indominable graphs cannot be characterized by a family of forbidden subgraphs.

Definition 3.3: A partition $P=\left\{D_{1}, D_{2}, \ldots, D_{k}\right\}$ of the vertex set $X(G)$ of G is called an X-indomatic partition, if D_{i} is an X-independent X-dominating set, for each $i=1,2,3, \ldots, k$. If $\Pi_{i d}(G)$ denotes the set of all X-indomatic partition of G, then the number $b_{X}(G)=\max _{P \in \Pi_{i d}(G)}|P|$ is called X-indomatic number of G.

Observation: Any X-indomatic partition is an X-domatic partition. Therefore, b_{X} (G) $\leq \mathrm{d}_{\mathrm{X}}(\mathrm{G})$.

Bipartite theory of Graphs-I and II [3,4] suggests some constructions of bipartite graphs. Let $\mathrm{G}=(\mathrm{V}, \mathrm{E})$ be a graph. The bipartite graph $\operatorname{VE}(\mathrm{G})=(\mathrm{V}, \mathrm{E}, \mathrm{F})$ is defined as the
graph with vertex $\mathrm{V} \cup \mathrm{E}$ and the edge set $\mathrm{F}=\{(\mathrm{u}, \mathrm{e})$: $\mathrm{e}=(\mathrm{u}, \mathrm{v}) \in \mathrm{E}\}$. The bipartite graph VV(G) $=\left(V, V^{1}, E^{1}\right), V^{1}$ is a copy of the vertices of $V(G) . E^{1}=\left\{\left(u, v^{1}\right):(u, v) \in E\right\}$. The bipartite graph $V V^{+}(G)=\left(V, V^{1}, E^{11}\right)$ contains the edges E^{1} of the graph $V V(G)$ together with the edges $\left\{\left(u, u^{1}\right): u \in V\right\}$. The bipartite graph $\operatorname{EV}(G)=(E, V, J)$ is defined by the edges $J=\{(e, u)$: $\mathrm{e}=(\mathrm{u}, \mathrm{v}) \in \mathrm{E}\}$.

Given a graph G, graphs $G 2$ and G^{2} have the same vertex set as G, with two vertices u and v adjacent in G2 if and only if they have a common neighbor in G and two vertices u and v are adjacent in G^{2} if and only if the distance $\mathrm{d}(\mathrm{u}, \mathrm{v}) \leq 2$ in G .

Theorem 3.4: For any graph $G, b(G)=b_{x}(V E(G))$.
Proof: Let $\mathrm{b}(\mathrm{G})=\mathrm{k}$. There exists a partition of $\mathrm{V}(\mathrm{G})$ into independent dominating sets of cardinality k. Let $\mathrm{V}_{1}, \mathrm{~V}_{2}, \ldots, \mathrm{~V}_{\mathrm{k}}$ be the partition of $\mathrm{V}(\mathrm{G})$ into independent dominating sets. In the graph $\operatorname{VE}(\mathrm{G})=\left(\mathrm{X}, \mathrm{Y}, \mathrm{E}^{1}\right), \mathrm{V}_{1}, \mathrm{~V}_{2}, \ldots, \mathrm{~V}_{\mathrm{k}}$ is a partition of X into X -independent X dominating sets. Therefore, $\mathrm{b}(\mathrm{G}) \leq \mathrm{b}_{\mathrm{X}}(\mathrm{VE}(\mathrm{G}))$.

Conversely, let α be the X -indomatic number of VE(G). The partition $\mathrm{X}_{1}, \mathrm{X}_{2}, \ldots, \mathrm{X} \alpha$ is a partition of X into X -independent X -dominating set. In $\mathrm{G}, \mathrm{X}_{1}, \mathrm{X}_{2}, \ldots, \mathrm{X} \alpha$ forms a indomatic partition of G. Therefore, $b(G) \geq b_{x}(V E(G))$. Hence, $b(G)=b_{X}(V E(G))$.

Theorem 3.5: For any graph $G, b^{1}(G)=b_{x}(E V(G))$.
Proof: Let $\mathrm{b}^{1}(\mathrm{G})=\mathrm{k}$. There exists a partition of edges into independent dominating sets of cardinality k. Let $\mathrm{E}_{1}, \mathrm{E}_{2}, \ldots, \mathrm{E}_{\mathrm{k}}$ be the partition of $\mathrm{E}(\mathrm{G})$ into independent dominating sets. In the graph $\mathrm{EV}(\mathrm{G})=\left(\mathrm{X}, \mathrm{Y}, \mathrm{E}^{1}\right), \mathrm{E}_{1}, \mathrm{E}_{2}, \ldots, \mathrm{E}_{\mathrm{k}}$ is a partition of X into X-independent Xdominating sets. Therefore, $\mathrm{b}^{1}(\mathrm{G}) \leq \mathrm{b}_{\mathrm{X}}(\mathrm{EV}(\mathrm{G}))$.

Conversely, let α be the X -indomatic number of $\mathrm{EV}(\mathrm{G})$. The partition X_{1}, $\mathrm{X}_{2}, \ldots, \mathrm{X} \alpha$ is a partition of X into X -independent X -dominating set. In $\mathrm{G}, \mathrm{X}_{1}, \mathrm{X}_{2}, \ldots, \mathrm{X} \alpha$ forms an indomatic partition of G. Therefore, $b(G) \geq b_{X}(E V(G))$. Hence, $b(G)=b_{X}(E V(G))$.

Theorem 3.6: For any graph $G, b(G 2)=b_{x}(V V(G))$.
Proof: Let $\mathrm{b}(\mathrm{G} 2)=\mathrm{k}$. There exists a partition of $\mathrm{V}(\mathrm{G})$ into independent dominating sets of cardinality k. Let $\mathrm{V}_{1}, \mathrm{~V}_{2}, \ldots, \mathrm{~V}_{\mathrm{k}}$ be the partition of $\mathrm{V}(\mathrm{G} 2)$ into independent dominating sets. In the graph $\mathrm{VV}(\mathrm{G})=\left(\mathrm{X}, \mathrm{Y}, \mathrm{E}^{1}\right), \mathrm{V}_{1}, \mathrm{~V}_{2}, \ldots, \mathrm{~V}_{\mathrm{k}}$ is a partition of X into X -independent X dominating sets. Therefore, $\mathrm{b}(\mathrm{G}) \leq \mathrm{b}_{\mathrm{X}}(\mathrm{VV}(\mathrm{G}))$.

Conversely, let α be the X -indomatic number of $\operatorname{VV}(\mathrm{G})$. The partition $\mathrm{X}_{1}, \mathrm{X}_{2}, \ldots, \mathrm{X} \alpha$ is a partition of X into X -independent X -dominating set. In $\mathrm{G} 2, \mathrm{X}_{1}, \mathrm{X}_{2}, \ldots, \mathrm{X} \alpha$ forms an indomatic partition of $G 2$. Therefore, $b(G 2) \geq b_{X}(V V(G))$. Hence, $b(G)=b_{X}(V V(G))$.

Theorem 3.7: For any graph $G, b\left(G^{2}\right)=b_{x}\left(V V^{+}(G)\right)$.
Proof: Let $\mathrm{b}\left(\mathrm{G}^{2}\right)=\mathrm{k}$. There exists a partition of $\mathrm{V}\left(\mathrm{G}^{2}\right)$ into independent dominating sets of cardinality k. Let $\mathrm{V}_{1}, \mathrm{~V}_{2}, \ldots, \mathrm{~V}_{\mathrm{k}}$ be the partition of $\mathrm{V}\left(\mathrm{G}^{2}\right)$ into independent dominating sets. In the graph $\mathrm{VV}^{+}(\mathrm{G})=\left(X, Y, \mathrm{E}^{1}\right), \mathrm{V}_{1}, \mathrm{~V}_{2}, \ldots, \mathrm{~V}_{\mathrm{k}}$ is a partition of X into X -independent X -dominating sets. Therefore, $\mathrm{b}\left(\mathrm{G}^{2}\right) \leq \mathrm{b}_{\mathrm{x}}\left(\mathrm{VV}^{+}(\mathrm{G})\right.$).

Conversely, let α be the X -indomatic number of $\mathrm{VV}^{+}(\mathrm{G})$. The partition X_{1}, $\mathrm{X}_{2}, \ldots, \mathrm{X} \alpha$ is a partition of X into X -independent X -dominating set. In $\mathrm{G}^{2}, \mathrm{X}_{1}, \mathrm{X}_{2}, \ldots, \mathrm{X} \alpha$ forms an indomatic partition of G^{2}. Therefore, $b\left(G^{2}\right) \geq b_{x}\left(\mathrm{VV}^{+}(G)\right)$. Hence, $b(G 2)=$ $\mathrm{b}_{\mathrm{x}}\left(\mathrm{VV}^{+}(\mathrm{G})\right)$.

Definition 3.8: The X-indominable number of a non X-indominable graph G with respect to X -domination, denoted by $\operatorname{IND}_{X}(\mathrm{G})$ is defined as $\mathrm{X}(\mathrm{H})-\mathrm{X}(\mathrm{G})$ where H is an X indominable graph of least order in which G can be embedded.

Remark: $1 \leq \operatorname{IND}_{\mathrm{X}}(\mathrm{G}) \leq \mathrm{n}$.
Remark: $\operatorname{IND}_{\mathrm{x}}\left(\mathrm{C}_{2 \mathrm{n}}\right)=1$ if n is odd and $\mathrm{n} \neq 3$.
Let $\mathrm{G}=\mathrm{C}_{2 \mathrm{n}}, \mathrm{n}$ is odd and $\mathrm{n} \neq 3$. Let H be the graph obtained from G by adding a vertex x_{n+1} to $X(G)$ and $z_{1}, z_{2}, \ldots, z_{n-1}$ to $Y(G)$ and making x_{i} and x_{n+1} adjacent with $z_{i}, 1 \leq i \leq n$ 1. Then the partition $\left\{\left\{\mathrm{x}_{1}, \mathrm{x}_{3}, \mathrm{x}_{5}, \ldots, \mathrm{x}_{\mathrm{n}-2}\right\},\left\{\mathrm{x}_{2}, \mathrm{x}_{4}, \mathrm{x}_{6}, \ldots, \mathrm{x}_{\mathrm{n}-1}\right\},\left\{\mathrm{x}_{\mathrm{n}}, \mathrm{x}_{\mathrm{n}+1}\right\}\right\}$ is an X -indominable partition of H . Therefore, $\mathrm{IND}_{\mathrm{X}}\left(\mathrm{C}_{2 \mathrm{n}}\right)=1$ if n is odd and $\mathrm{n} \neq 3$.

Example:

The graph $\mathrm{G}=\mathrm{C}_{10}$ is non X -indominable. We add a vertex x_{6} to X and $\mathrm{z}_{1}, \mathrm{z}_{2}, \mathrm{z}_{3}$ and z_{4} to Y. Make x_{6} adjacent to $\mathrm{z}_{1}, \mathrm{z}_{2}, \mathrm{z}_{3}$ and $\mathrm{z}_{4} . \mathrm{z}_{1}$ is adjacent to $\mathrm{x}_{1} . \mathrm{z}_{2}$ is adjacent to $\mathrm{x}_{2} . \mathrm{z}_{3}$ is adjacent to $\mathrm{x}_{3} . \mathrm{z}_{4}$ is adjacent to x_{4}. The graph obtained by these operation gives a X indominable graph which is given above. Hence, $\mathrm{IND}_{\mathrm{X}}\left(\mathrm{C}_{10}\right)=1$.

REFERENCES

[1] Acharya, B.D, Walikar, H.B, Nat. Acad. Sci. Letters, 4(1), 23, 1981.
[2] Cockayne, E.J, Hedetniemi, S.T., Networks, 7, 247, 1977.
[3] Stephen Hedetniemi and Renu Laskar, A Bipartite theory of graphs I, Congressus Numerantium, 55, 5, 1986.
[4] Stephen Hedetniemi and Renu Laskar, A Bipartite theory of graphs II, Congressus Numerantium, 64, 137, 1988.

[^0]: ${ }^{1}$ SASTRA University, School of Humanities and Sciences, Department of Mathematics, Tanjore, India.
 E-mail: venkatakrish2@maths.sastra.edu.
 ${ }^{2}$ Saraswathi Narayanan College, Ramanujan Research Center, Reader (Retd), Madurai, India.
 E-mail: sulanesri@yahoo.com.

