ORIGINAL PAPER

DIGIT-AMICABLE NUMBERS

DUMITRU ACU¹, CRISTINEL MORTICI²

Manuscript received: 25.03.2012; Accepted paper: 10.05.2012; Published online: 15.06.2012.

Abstract. The aim of this paper is to establish some interesting arithmetic properties of a class of integers.

Keywords: Diophantine equations, powers, digit sum. **1991** *Mathematics Subject Classification:* 11D72; 11A67.

1. INTRODUCTION

The starting point of this paper is a problem of Kordemski [5] who investigated whether there are four digit numbers which are equal to the cube of their digit sum, that is numbers \overline{abcd} such that

$$\overline{abcd} = (a+b+c+d)^3 \tag{1.1}$$

Subsequently, Prokofiev [7] became preoccupied for finding numbers $a_1a_2...a_n$, with $n \ge 2$ such that

$$\overline{a_1 a_2 \dots a_n} = (a_1 + a_2 + \dots + a_n)^3$$
(1.2)

Kordemski [5] found the unique solution of (1.1)

$$4913 = (4+9+1+3)^3$$

and Nesterciuk [6] solved (2) in the case of n = 5, by indicating the solutions

$$19683 = (1+9+6+8+3)^3$$
, $17576 = (1+7+5+7+6)^3$

Every solution $\overline{a_1 a_2 \dots a_n}$ of problem (1.2) is a cube. As a consequence, the cases n = 2 and n = 3 can be verified directly. Thus (1.2) has no solution in the case n = 2, and the unique solution in the case n = 3 is

$$512 = (5 + 1 + 2)^3$$

¹ Lucian Blaga University of Sibiu, Department of Mathematics, 550024, Sibiu, Romania.

E-mail: <u>acu_dumitru@yahoo.com</u>.

² Valahia University of Targoviste, Sciences Department, 130082, Targoviste, Romania. E-mail: <u>cmortici@valahia.ro</u>.

Equation (1.2) has no solutions for $n \ge 7$, since

$$\overline{a_1 a_2 \dots a_n} \ge 10^{n-1} > (9n)^3 \ge (a_1 + a_2 + \dots + a_n)^3.$$

The middle inequality $10^{n-1} > (9n)^3$ is true for n = 7 and it can be proved by induction, for $n \ge 7$, using

$$10(9n)^3 > (9(n+1))^3$$
.

Since, with n = k + 7, we get

$$10(9n)^{3} - (9(n+1))^{3} = 2127222 + 931662k + 135594k^{2} + 6561k^{3} > 0$$

This type of problem were further studied and extended by many authors. Starting from the surprising equality

$$2401 = \left(2 + 4 + 0 + 1\right)^4,$$

Nesterciuk [6] studied the equation

$$\overline{abcd} = (a+b+c+d)^4 \tag{1.3}$$

Kajibaev [4] found by trials the following new solutions

$$234256 = (2+3+4+2+5+6)^4$$

$$390625 = (3+9+0+6+2+5)^4$$

but (1.3) was completely solved by Acu [1] who found the last two solutions

$$614656 = (6+1+4+6+5+6)^4$$
$$1679616 = (1+6+7+9+6+1+6)^4$$

of the following generalization of (1.3)

$$\overline{a_1 a_2 \dots a_n} = (a_1 + a_2 + \dots + a_n)^4$$

It is proven in Matematika v skole, 2, 76, 1974, that the problem $\overline{a_1 a_2 \dots a_n} = (a_1 + a_2 + \dots + a_n)^n$, $n \ge 2$, has only the solutions

$$81 = (8+1)^2$$

$$512 = (5+1+2)^3$$

$$2401 = (2+4+0+1)^4$$

This type of problem has attracted the attention of several authors. We cite for example the work of Berinde [3], who asked whether there exist numbers \overline{abc} such that both \overline{abc} and \overline{cba} are divisible by $(a+b+c)^2$.

2. DIGIT-AMICABLE NUMBERS

We prove the following

Theorem 1. The equation

$$\overline{a_1 a_2 \dots a_n} = (a_1 + a_2 + \dots + a_n)^2$$
(2.1)

has a unique solution, namely $81 = (8+1)^2$.

Proof: For every $n \ge 5$ we have

$$\overline{a_1 a_2 \dots a_n} \ge 10^{n-1} > (9n)^2 \ge (a_1 + a_2 + \dots + a_n)^2$$

The middle inequality $10^{n-1} > (9n)^2$ is true for n = 5 and it can be proved by induction, for $n \ge 5$, using

$$10(9n)^2 > (9(n+1))^2$$

Indeed, with n = k + 5, we get

$$10(9n)^{2} - (9(n+1))^{2} = 17334 + 7128k + 729k^{2}.$$

Consequently, the given equation has no solutions for $n \ge 5$.

Cases n = 2 and n = 3 can be verified by direct computation, taking into account that $\overline{a_1a_2...a_n}$ is a perfect square. There are no solutions.

In the case n = 4, as $a_1 a_2 a_3 a_4 \ge 1000$, it follows that

$$32 \le a_1 + a_2 + a_3 + a_4 < 4 \cdot 9 = 36$$
,

so $a_1 + a_2 + a_3 + a_4 \in \{32, 33, 34, 35, 36\}.$

There are no solutions and the theorem is proved.

Starting from (2.1) and inspired by the notion of a *pair of amicable numbers*, namely two different numbers such that the sum of the proper divisors of each is equal to the other number, we say that a pair of distinct numbers $\overline{a_1a_2...a_m}$ and $\overline{b_1b_2...b_n}$ are *digit-amicable numbers* if

$$\overline{a_1 a_2 \dots a_m} = (b_1 + b_2 + \dots + b_n)^2 \text{ and } \overline{b_1 b_2 \dots b_n} = (a_1 + a_2 + \dots + a_m)^2.$$
(2.2)

In this case, we have

$$10^{m=1} \le 81n^2$$
, and $10^{n=1} \le 81m^2$. (2.3)

Multiplying and using the AM-GM inequality, we get

$$10^{m+n=2} \le 81^2 (mn)^2 \le 81^2 \left(\frac{m+n}{2}\right)^4$$

thus

$$10^{m+n-2} \le \frac{6561}{16} (m+n)^4.$$
(2.4)

Lemma 1. For all integers $s \ge 9$ we have

$$10^{s=2} > \frac{6561}{16} s^4.$$

Proof. The lemma is true for s = 9. Assuming that it is true for some $s \ge 9$, we have

$$\left(1+\frac{1}{s}\right)^4 \le \left(1+\frac{1}{9}\right)^9 = 1.5242... < 10,$$

or $(s+1)^4 < 10s^4$, and the lemma is proved.

As a direct consequence of (2.4) and Lemma 1, if $\overline{a_1 a_2 \dots a_m}$ and $\overline{b_1 b_2 \dots b_n}$ are *amicable-digit numbers* then $m + n \le 8$. Moreover, if we assume m < n then

 $10^{n=1} - 81m^2 > 10^m - 81m^2 > 0$

for every $m \ge 3$, and the second inequality in (2.3) does not hold in this case.

We prove the following

Lemma 2. If m < n and $\overline{a_1 a_2 \dots a_m}$ and $\overline{b_1 b_2 \dots b_n}$ are amicable-digit numbers, then $m + n \le 8$ and $m \le 2$

In fact there are only two pairs (m, n) satisfying (2.3) with $m + n \le 8$ and $m \le 2$, namely (m, n) = (1, 2) and (m, n) = (2, 3). In this case, the pair a_1 and $\overline{b_1 b_2}$, and the pair $\overline{a_1 a_2}$ and $\overline{b_1 b_2 b_3}$ are digit-amicable numbers if

and

$$a_1 = (b_1 + b_2)^2$$
 and $\overline{b_1 b_2} = a_1^2$,

$$\overline{a_1 a_2} = (b_1 + b_2 + b_3)^2$$
 and $\overline{b_1 b_2 b_3} = (a_1 + a_2)^2$

By direct trials, taking into account that a_1 and a_1a_2 should be perfect squares, we find no solutions. We now search for pairs of digit-amicable numbers having the same number of digits. We give the following

Theorem 2. The unique pair of digit-amicable numbers are 169 and 256, with

$$169 = (2+5+6)^2$$
, $256 = (1+6+9)^2$

Proof: As above, by the first relation in (2.2), we get $10^{n=1} \le (9n)^2$, so $n \le 4$

www.josa.ro

In the case n = 2 the digit sums $a_1 + a_2$ and $b_1 + b_2$ can take values in {4, 5, 6, 7, 8, 9}. If $a_1 + a_2 = 4$, then $\overline{b_1 b_2} = 16$, and $(b_1 + b_2)^2 = (1+6)^2 = 49 = \overline{a_1 a_2}$, which contradicts $a_1 + a_2 = 4$.

If $a_1 + a_2 = 5$, then $\overline{b_1 b_2} = 25$, and $(b_1 + b_2)^2 = (2+5)^2 = 49 = \overline{a_1 a_2}$, contradiction. If $a_1 + a_2 = 6$, then $\overline{b_1 b_2} = 36$, and $(b_1 + b_2)^2 = (3+6)^2 = 81 = \overline{a_1 a_2}$, contradiction. If $a_1 + a_2 = 7$, then $\overline{b_1 b_2} = 49$, and $(b_1 + b_2)^2 = (4+9)^2 = 169 = \overline{a_1 a_2}$, contradiction. If $a_1 + a_2 = 8$, then $\overline{b_1 b_2} = 64$, and $(b_1 + b_2)^2 = (6+4)^2 = 100 = \overline{a_1 a_2}$, contradiction. If $a_1 + a_2 = 9$, then $\overline{b_1 b_2} = 81$, and $(b_1 + b_2)^2 = (8+1)^2 = 81$, but $\overline{a_1 a_2} = \overline{b_1 b_2}$.

In the case n = 3 the digit sums $a_1 + a_2 + a_3$ and $b_1 + b_2 + b_3$ can take values in {10, 11, 12,...27}.

If $a_1 + a_2 + a_3 = 10$, then $\overline{b_1 b_2 b_3} = 100$, and $(b_1 + b_2 + b_3)^2 = (1 + 0 + 0)^2 = \overline{a_1 a_2 a_3}$, contradiction.

If $a_1 + a_2 + a_3 = 11$, then $\overline{b_1 b_2 b_3} = 121$, and $(b_1 + b_2 + b_3)^2 = (1 + 2 + 1)^2 = \overline{a_1 a_2 a_3}$, contradiction.

If $a_1 + a_2 + a_3 = 12$, then $\overline{b_1 b_2 b_3} = 144$, and $(b_1 + b_2 + b_3)^2 = (1 + 4 + 4)^2 = \overline{a_1 a_2 a_3}$, contradiction.

If $a_1 + a_2 + a_3 = 13$, then $\overline{b_1 b_2 b_3} = 169$, and $(b_1 + b_2 + b_3)^2 = (1 + 6 + 9)^2 = \overline{a_1 a_2 a_3}$, so $\overline{a_1 a_2 a_3} = 256$, which is a solution of our problem.

After similiar treatment of the remaining cases $a_1 + a_2 + a_3 \in \{14, 15, 16, ..., 27\}$ no other solutions are found.

3. CONCLUDING REMARKS

The general problem of solving the equation

$$\overline{a_1 a_2 \dots a_n} = (a_1 + a_2 + \dots + a_n)^k, \, n, k \ge 2,$$
(3.1)

remains open and we are convinced that other interesting results can be found.

In this connection, we mention the work of Acu [2] who solved the equations

$$\overline{a_1 a_2 \dots a_n} = (a_1 + a_2 + \dots + a_n)^5$$

and

$$\overline{a_1 a_2 \dots a_n} = (a_1 + a_2 + \dots + a_n)^6$$

where $n \ge 2$. The solutions are the following

$$17210368 = (1+7+2+1+0+3+6+8)^{5}$$

$$52521875 = (5+2+5+2+1+8+7+5)^{5}$$

$$60466176 = (6+0+4+6+6+1+7+6)^{5}$$

$$205962976 = (2+0+5+9+6+2+9+7+6)^{5}$$

and, respectively,

$$34012224 = (3+4+0+1+2+2+2+4)^{6}$$

$$8303765625 = (8+3+0+3+7+6+5+6+2+5)^{6}$$

$$24794911296 = (2+4+7+9+4+9+1+1+2+9+6)^{6}$$

$$68719476736 = (6+8+7+1+9+4+7+6+7+3+6)^{6}$$

A computer program allows us to find the solutions of (3.1) for larger values of k. Below we tabulate the solutions for $7 \le k \le 30$.

Table 1. Solutions for $7 \le k \le 30$	
k	Solutions
7	612220032, 10460353203, 27512614111, 52523350144,
	271818611107, 1174711139837, 2207984167552, 6722988818432
8	20047612231936, 72301961339136, 248155780267521
9	3904305912313344, 45848500718449031, 150094635296999121
10	13744803133596058624, 19687440434072265625,
	53861511409489970176, 73742412689492826049
11	8007313507497959524352
13	8192000000000000, 67108864000000000000, 14076019706120526112710656
14	2670419511272061205254504361
17	225179981368524800000000000000000000000000000000000
19	14411518807585587200000000000000000000000000000
	135085171767299208900000000000000000000000000000000
20	121576654590569288010000000000000000000000000000000000
21	109418989131512359209000000000000000000000000000000000
22	98477090218361123288100000000000000000000000000000000
28	5233476330273605372135115210000000000000000000000000000000

There are no solutions for $k \in \{12, 15, 16, 18, 23, 24, 25, 26, 27, 29, 30\}$.

Acknowledgement: The work of the second author was supported by a grant of the Romanian National Authority for Scientific Research, CNCS-UEFISCDI, project number PN-II-ID-PCE-2011-3-0087.

REFERENCES

[1] Acu, D., Asupra unor probleme de teoria numerelor, *Matematica în Școala Generală*. *Culegere de Articole Metodice și Științifice. Coordonator Acad. N. Teodorescu*, SSMR, 1976.
[2] Acu, D., *Matematika v shkole*, 1, 55, 1981.

[3] Berinde, V., *Explorare, Investigare și Descoperire în Matematică*, Ed. Efemeride, Baia Mare, p. 235, 2001.

[4] Kajibaev, K., Matematika v shkole, 1, 82, 1976.

[5] Kordemski, B. A., Matematika v shkole, 1, 62, 1974.

[6] Nesterciuk, A. V., Matematika v shkole, 4, 76, 1975.

[7] Prokofiev, A. N., *Matematika v shkole*, 4, 76, 1975.