DIGIT-AMICABLE NUMBERS

DUMITRU ACU ${ }^{1}$, CRISTINEL MORTICI ${ }^{2}$

Manuscript received: 25.03.2012; Accepted paper: 10.05.2012;
Published online: 15.06.2012.

Abstract

The aim of this paper is to establish some interesting arithmetic properties of a class of integers.

Keywords: Diophantine equations, powers, digit sum.
1991 Mathematics Subject Classification: 11D72; 11A67.

1. INTRODUCTION

The starting point of this paper is a problem of Kordemski [5] who investigated whether there are four digit numbers which are equal to the cube of their digit sum, that is numbers $\overline{a b c d}$ such that

$$
\begin{equation*}
\overline{a b c d}=(a+b+c+d)^{3} \tag{1.1}
\end{equation*}
$$

Subsequently, Prokofiev [7] became preoccupied for finding numbers $\overline{a_{1} a_{2} \ldots a_{n}}$, with $n \geq 2$ such that

$$
\begin{equation*}
\overline{a_{1} a_{2} \ldots a_{n}}=\left(a_{1}+a_{2}+\ldots+a_{n}\right)^{3} \tag{1.2}
\end{equation*}
$$

Kordemski [5] found the unique solution of (1.1)

$$
4913=(4+9+1+3)^{3}
$$

and Nesterciuk [6] solved (2) in the case of $n=5$, by indicating the solutions

$$
19683=(1+9+6+8+3)^{3}, \quad 17576=(1+7+5+7+6)^{3}
$$

Every solution $\overline{a_{1} a_{2} \ldots a_{n}}$ of problem (1.2) is a cube. As a consequence, the cases $n=2$ and $n=3$ can be verified directly. Thus (1.2) has no solution in the case $n=2$, and the unique solution in the case $n=3$ is

$$
512=(5+1+2)^{3}
$$

[^0]Equation (1.2) has no solutions for $n \geq 7$, since
$\overline{a_{1} a_{2} \ldots a_{n}} \geq 10^{n-1}>(9 n)^{3} \geq\left(a_{1}+a_{2}+\ldots+a_{n}\right)^{3}$.
The middle inequality $10^{n-1}>(9 n)^{3}$ is true for $n=7$ and it can be proved by induction, for $n \geq 7$, using

$$
10(9 n)^{3}>(9(n+1))^{3} .
$$

Since, with $n=k+7$, we get
$10(9 n)^{3}-(9(n+1))^{3}=2127222+931662 k+135594 k^{2}+6561 k^{3}>0$
This type of problem were further studied and extended by many authors. Starting from the surprising equality

$$
2401=(2+4+0+1)^{4}
$$

Nesterciuk [6] studied the equation

$$
\begin{equation*}
\overline{a b c d}=(a+b+c+d)^{4} \tag{1.3}
\end{equation*}
$$

Kajibaev [4] found by trials the following new solutions

$$
\begin{aligned}
& 234256=(2+3+4+2+5+6)^{4} \\
& 390625=(3+9+0+6+2+5)^{4}
\end{aligned}
$$

but (1.3) was completely solved by Acu [1] who found the last two solutions

$$
\begin{aligned}
& 614656=(6+1+4+6+5+6)^{4} \\
& 1679616=(1+6+7+9+6+1+6)^{4}
\end{aligned}
$$

of the following generalization of (1.3)

$$
\overline{a_{1} a_{2} \ldots a_{n}}=\left(a_{1}+a_{2}+\ldots+a_{n}\right)^{4}
$$

It is proven in Matematika v skole, 2, 76, 1974, that the problem $\overline{a_{1} a_{2} \ldots a_{n}}=\left(a_{1}+a_{2}+\ldots+a_{n}\right)^{n}, \mathrm{n} \geq 2$, has only the solutions

$$
\begin{aligned}
& 81=(8+1)^{2} \\
& 512=(5+1+2)^{3} \\
& 2401=(2+4+0+1)^{4} .
\end{aligned}
$$

This type of problem has attracted the attention of several authors. We cite for example the work of Berinde [3], who asked whether there exist numbers $\overline{a b c}$ such that both $\overline{a b c}$ and $\overline{c b a}$ are divisible by $(a+b+c)^{2}$.

2. DIGIT-AMICABLE NUMBERS

We prove the following
Theorem 1. The equation

$$
\begin{equation*}
\overline{a_{1} a_{2} \ldots a_{n}}=\left(a_{1}+a_{2}+\ldots+a_{n}\right)^{2} \tag{2.1}
\end{equation*}
$$

has a unique solution, namely $81=(8+1)^{2}$.
Proof: For every $n \geq 5$ we have

$$
\overline{a_{1} a_{2} \ldots a_{n}} \geq 10^{n-1}>(9 n)^{2} \geq\left(a_{1}+a_{2}+\ldots+a_{n}\right)^{2}
$$

The middle inequality $10^{n-1}>(9 n)^{2}$ is true for $n=5$ and it can be proved by induction, for $n \geq 5$, using

$$
10(9 n)^{2}>(9(n+1))^{2}
$$

Indeed, with $n=k+5$, we get

$$
10(9 n)^{2}-(9(n+1))^{2}=17334+7128 k+729 k^{2} .
$$

Consequently, the given equation has no solutions for $n \geq 5$.
Cases $n=2$ and $n=3$ can be verified by direct computation, taking into account that $\overline{a_{1} a_{2} \ldots a_{n}}$ is a perfect square. There are no solutions.

In the case $n=4$, as $\overline{a_{1} a_{2} a_{3} a_{4}} \geq 1000$, it follows that

$$
32 \leq a_{1}+a_{2}+a_{3}+a_{4}<4 \cdot 9=36,
$$

so $a_{1}+a_{2}+a_{3}+a_{4} \in\{32,33,34,35,36\}$.
There are no solutions and the theorem is proved.
Starting from (2.1) and inspired by the notion of a pair of amicable numbers, namely two different numbers such that the sum of the proper divisors of each is equal to the other number, we say that a pair of distinct numbers $\overline{a_{1} a_{2} \ldots a_{m}}$ and $\overline{b_{1} b_{2} \ldots b_{n}}$ are digit-amicable numbers if

$$
\begin{equation*}
\overline{a_{1} a_{2} \ldots a_{m}}=\left(b_{1}+b_{2}+\ldots+b_{n}\right)^{2} \text { and } \overline{b_{1} b_{2} \ldots b_{n}}=\left(a_{1}+a_{2}+\ldots+a_{m}\right)^{2} . \tag{2.2}
\end{equation*}
$$

In this case, we have

$$
\begin{equation*}
10^{\mathrm{m}=1} \leq 81 \mathrm{n}^{2}, \text { and } 10^{\mathrm{n}=1} \leq 81 \mathrm{~m}^{2} \tag{2.3}
\end{equation*}
$$

Multiplying and using the AM-GM inequality, we get

$$
10^{m+n=2} \leq 81^{2}(m n)^{2} \leq 81^{2}\left(\frac{m+n}{2}\right)^{4}
$$

thus

$$
\begin{equation*}
10^{m+n=2} \leq \frac{6561}{16}(m+n)^{4} . \tag{2.4}
\end{equation*}
$$

Lemma 1. For all integers $s \geq 9$ we have

$$
10^{s=2}>\frac{6561}{16} s^{4}
$$

Proof. The lemma is true for $s=9$. Assuming that it is true for some $s \geq 9$, we have

$$
\left(1+\frac{1}{s}\right)^{4} \leq\left(1+\frac{1}{9}\right)^{9}=1.5242 \ldots<10
$$

or $(s+1)^{4}<10 s^{4}$, and the lemma is proved.
As a direct consequence of (2.4) and Lemma 1 , if $\overline{a_{1} a_{2} \ldots a_{m}}$ and $\overline{b_{1} b_{2} \ldots b_{n}}$ are amicable-digit numbers then $m+n \leq 8$. Moreover, if we assume $m<n$ then
$10^{n=1}-81 m^{2}>10^{m}-81 m^{2}>0$
for every $m \geq 3$, and the second inequality in (2.3) does not hold in this case.
We prove the following
Lemma 2. If $m<n$ and $\overline{a_{1} a_{2} \ldots a_{m}}$ and $\overline{b_{1} b_{2} \ldots b_{n}}$ are amicable-digit numbers, then $m+n \leq 8$ and $m \leq 2$

In fact there are only two pairs (m, n) satisfying (2.3) with $m+n \leq 8$ and $m \leq 2$, namely $(m, n)=(1,2)$ and $(m, n)=(2,3)$. In this case, the pair a_{1} and $\overline{b_{1} b_{2}}$, and the pair $\overline{a_{1} a_{2}}$ and $\overline{b_{1} b_{2} b_{3}}$ are digit-amicable numbers if

$$
a_{1}=\left(b_{1}+b_{2}\right)^{2} \text { and } \overline{b_{1} b_{2}}=a_{1}^{2},
$$

and

$$
\overline{a_{1} a_{2}}=\left(b_{1}+b_{2}+b_{3}\right)^{2} \text { and } \overline{b_{1} b_{2} b_{3}}=\left(a_{1}+a_{2}\right)^{2}
$$

By direct trials, taking into account that a_{1} and $\overline{a_{1} a_{2}}$ should be perfect squares, we find no solutions. We now search for pairs of digit-amicable numbers having the same number of digits. We give the following

Theorem 2. The unique pair of digit-amicable numbers are 169 and 256, with

$$
169=(2+5+6)^{2}, \quad 256=(1+6+9)^{2}
$$

Proof: As above, by the first relation in (2.2), we get $10^{n=1} \leq(9 n)^{2}$, so $n \leq 4$

In the case $n=2$ the digit sums $a_{1}+a_{2}$ and $b_{1}+b_{2}$ can take values in $\{4,5,6,7,8,9\}$.
If $a_{1}+a_{2}=4$, then $\overline{b_{1} b_{2}}=16$, and $\left(b_{1}+b_{2}\right)^{2}=(1+6)^{2}=49=\overline{a_{1} a_{2}}$, which contradicts $a_{1}+a_{2}=4$.

If $a_{1}+a_{2}=5$, then $\overline{b_{1} b_{2}}=25$, and $\left(b_{1}+b_{2}\right)^{2}=(2+5)^{2}=49=\overline{a_{1} a_{2}}$, contradiction.
If $a_{1}+a_{2}=6$, then $\overline{b_{1} b_{2}}=36$, and $\left(b_{1}+b_{2}\right)^{2}=(3+6)^{2}=81=\overline{a_{1} a_{2}}$, contradiction.
If $a_{1}+a_{2}=7$, then $\overline{b_{1} b_{2}}=49$, and $\left(b_{1}+b_{2}\right)^{2}=(4+9)^{2}=169=\overline{a_{1} a_{2}}$, contradiction.
If $a_{1}+a_{2}=8$, then $\overline{b_{1} b_{2}}=64$, and $\left(b_{1}+b_{2}\right)^{2}=(6+4)^{2}=100=\overline{a_{1} a_{2}}$, contradiction.
If $a_{1}+a_{2}=9$, then $\overline{b_{1} b_{2}}=81$, and $\left(b_{1}+b_{2}\right)^{2}=(8+1)^{2}=81$, but $\overline{a_{1} a_{2}}=\overline{b_{1} b_{2}}$.
In the case $n=3$ the digit sums $a_{1}+a_{2}+a_{3}$ and $b_{1}+b_{2}+b_{3}$ can take values in \{10, $11,12, . .27\}$.

If $a_{1}+a_{2}+a_{3}=10$, then $\overline{b_{1} b_{2} b_{3}}=100$, and $\left(b_{1}+b_{2}+b_{3}\right)^{2}=(1+0+0)^{2}=\overline{a_{1} a_{2} a_{3}}$, contradiction.

If $a_{1}+a_{2}+a_{3}=11$, then $\overline{b_{1} b_{2} b_{3}}=121$, and $\left(b_{1}+b_{2}+b_{3}\right)^{2}=(1+2+1)^{2}=\overline{a_{1} a_{2} a_{3}}$, contradiction.

If $a_{1}+a_{2}+a_{3}=12$, then $\overline{b_{1} b_{2} b_{3}}=144$, and $\left(b_{1}+b_{2}+b_{3}\right)^{2}=(1+4+4)^{2}=\overline{a_{1} a_{2} a_{3}}$, contradiction.

If $a_{1}+a_{2}+a_{3}=13$, then $\overline{b_{1} b_{2} b_{3}}=169$, and $\left(b_{1}+b_{2}+b_{3}\right)^{2}=(1+6+9)^{2}=\overline{a_{1} a_{2} a_{3}}$, so $\overline{a_{1} a_{2} a_{3}}=256$, which is a solution of our problem.

After similiar treatment of the remaining cases $a_{1}+a_{2}+a_{3} \in\{14,15,16, \ldots, 27\}$ no other solutions are found.

3. CONCLUDING REMARKS

The general problem of solving the equation

$$
\begin{equation*}
\overline{a_{1} a_{2} \ldots a_{n}}=\left(a_{1}+a_{2}+\ldots+a_{n}\right)^{k}, n, k \geq 2, \tag{3.1}
\end{equation*}
$$

remains open and we are convinced that other interesting results can be found.
In this connection, we mention the work of Acu [2] who solved the equations

$$
\overline{a_{1} a_{2} \ldots a_{n}}=\left(a_{1}+a_{2}+\ldots+a_{n}\right)^{5}
$$

and

$$
\overline{a_{1} a_{2} \ldots a_{n}}=\left(a_{1}+a_{2}+\ldots+a_{n}\right)^{6}
$$

where $n \geq 2$. The solutions are the following

$$
\begin{gathered}
17210368=(1+7+2+1+0+3+6+8)^{5} \\
52521875=(5+2+5+2+1+8+7+5)^{5} \\
60466176=(6+0+4+6+6+1+7+6)^{5} \\
205962976=(2+0+5+9+6+2+9+7+6)^{5}
\end{gathered}
$$

and, respectively,

$$
\begin{aligned}
& 34012224=(3+4+0+1+2+2+2+4)^{6} \\
& 8303765625=(8+3+0+3+7+6+5+6+2+5)^{6} \\
& 24794911296=(2+4+7+9+4+9+1+1+2+9+6)^{6} \\
& 68719476736=(6+8+7+1+9+4+7+6+7+3+6)^{6}
\end{aligned}
$$

A computer program allows us to find the solutions of (3.1) for larger values of k. Below we tabulate the solutions for $7 \leq k \leq 30$.

Table 1. Solutions for $7 \leq k \leq 30$

k	Solutions
7	$612220032,10460353203,27512614111,52523350144$, $271818611107,1174711139837,2207984167552,6722988818432$
8	$20047612231936,72301961339136,248155780267521$
9	$3904305912313344,45848500718449031,150094635296999121$
10	13744803133596058624,19687440434072265625, 53861511409489970176,73742412689492826049
11	8007313507497959524352
13	$81920000000000000,671088640000000000000,14076019706120526112710656$
14	2670419511272061205254504361
17	225179981368524800000000000000000
19	144151880758558720000000000000000000,
20	13508517176729920890000000000000000000
21	1215766545905692880100000000000000000000
22	109418989131512359209000000000000000000000
28	5233477633021836112328810000000000000000000000

There are no solutions for $k \in\{12,15,16,18,23,24,25,26,27,29,30\}$.
Acknowledgement: The work of the second author was supported by a grant of the Romanian National Authority for Scientific Research, CNCS-UEFISCDI, project number PN-II-ID-PCE-2011-3-0087.

REFERENCES

[1] Acu, D., Asupra unor probleme de teoria numerelor, Matematica în Şcoala Generală. Culegere de Articole Metodice şi Ştiinţifice. Coordonator Acad. N. Teodorescu, SSMR, 1976.
[2] Acu, D., Matematika v shkole, 1, 55, 1981.
[3] Berinde, V., Explorare, Investigare şi Descoperire în Matematică, Ed. Efemeride, Baia Mare, p. 235, 2001.
[4] Kajibaev, K., Matematika v shkole, 1, 82, 1976.
[5] Kordemski, B. A., Matematika v shkole, 1, 62, 1974.
[6] Nesterciuk, A. V., Matematika v shkole, 4, 76, 1975.
[7] Prokofiev, A. N., Matematika v shkole, 4, 76, 1975.

[^0]: ${ }^{1}$ Lucian Blaga University of Sibiu, Department of Mathematics, 550024, Sibiu, Romania.
 E-mail: acu_dumitru@yahoo.com.
 ${ }^{2}$ Valahia University of Targoviste, Sciences Department, 130082, Targoviste, Romania. E-mail: cmortici@valahia.ro.

