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Abstract. In this paper, we study timelike biharmonic curves according to Sabban 

frame in the  . We characterize the timelike biharmonic curves in terms of their geodesic 

curvature. Finally, we find out their explicit parametric equations according to Sabban 
Frame. 
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1. INTRODUCTION  
 
 

A smooth map MN :  is said to be biharmonic if it is a critical point of the 
bienergy functional: 
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where  is the tension field of  dtr:=)(T .  

The Euler--Lagrange equation of the bienergy is given by 0=)(2 T . Here the section 

)(2 T  is defined by 

  ,),(tr)(=)(2   ddR TTT                                     (1.1) 

and called the bitension field of  . Non-harmonic biharmonic maps are called proper 
biharmonic maps. 

This study is organised as follows: Firstly, we study timelike biharmonic curves 
accordig to Sabban frame in the Heisenberg group Heis 3 . Secondly, we characterize the 
timelike biharmonic curves in terms of their geodesic curvature and we prove that all of 
biharmonic curves are helices in the Heisenberg group Heis . Finally, we find out their 
explicit parametric equations according to Sabban Frame. 
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2. THE LORENTZIAN HEISENBERG GROUP H 
 
 
Heisenberg group H  can be seen as the space  endowed with the following 

multiplication: 

3R
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Heis  is a three-dimensional, connected, simply connected and 2-step nilpotent Lie 

group. 

3

The identity of the group is  and the inverse of  is given by 
. The left-invariant Lorentz metric on  is 

(0,0,0) ),,( zyx
),,( zyx  H

 
.)(= 222 dzxdydydxg   

 
The following set of left-invariant vector fields forms an orthonormal basis for the 

corresponding Lie algebra: 
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The characterising properties of this algebra are the following commutation relations: 
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Proposition 2.1. For the covariant derivatives of the Levi-Civita connection of the 

left-invariant metric , defined above the following is true: g
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where the -element in the table above equals ),( ji ji

ee  for our basis  1,2,3}.=,{ kke

The unit pseudo-Heisenberg sphere (Lorentzian Heisenberg sphere) is defined by 
 

    .1=:=2
1 ββ,β gHS H   

 
We adopt the following notation and sign convention for Riemannian curvature 

operator: 
 

.=),( ], ZZZZYXR YXXYYX   

 
The Riemannian curvature tensor is given by 

 
).,),((=),,,( WZYXRgWZYXR   
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Moreover we put 

 
),(=,(= lkjiijklkjiijk RRRR e,e,e,e)ee,e  

 
where the indices  and  take the values 1,2  and . kji ,, l 3
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3. TIMELIKE BIHARMONIC S-CURVES ACCORDING TO SABBAN FRAME IN 

THE  2
1 H

S  

 
 
Let HI:  be a timelike curve in the Lorentzian Heisenberg group H  parametrized 

by arc length. Let  be the Frenet frame fields tangent to the Lorentzian Heisenberg 
group  along 

}BN,{T,
H   defined as follows: 

T  is the unit vector field  tangent to '  ,  is the unit vector field in the direction of 

 (normal to 

N

TT  ), and B  is chosen so that  is a positively oriented orthonormal 
basis. Then, we have the following Frenet formulas: 

}B{ N,T,

 
,= NTT   

,= BTNT    

,= NBT   
(3.1) 

 
where   is the curvature of   and   is its torsion, 
 

      1,=1,=1,= BB,NN,TT, ggg   

      0.=== BN,BT,NT, ggg  
 
Now we give a new frame different from Frenet frame. Let  HS2

1: I  be unit 

speed spherical timelike curve. We denote   as the arc-length parameter of   . Let us denote 
 and we call    ,=  't  t  a unit tangent vector of .  We now set a vector 

      ts =  along .  This frame is called the Sabban frame of   on   .2
1 HS  Then we 

have the following spherical Frenet-Serret formulae of  : 
 

,= t'  

,= st g
'    

,= ts g
'   

(3.2) 
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where g  is the geodesic curvature of the timelike curve   on the  HS2
1  and 

 
      1,=1,=,1,=, ss,tt ggg   

      0.=,==, sst,t  ggg  
 
With respect to the orthonormal basis  we can write },{ 321 e,e,e

 
,= 332211 eee    

,= 332211 eeet ttt   

.= 332211 eees sss   

(3.3) 

 
To separate a biharmonic curve according to Sabban frame from that of Frenet- Serret 

frame, in the rest of the paper, we shall use notation for the curve defined above as 
biharmonic -curve. S

 
Theorem 3.1.  

 is a timelike biharmonic S-curve if and only if g =constant 0, 
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Proof: Using (2.1) and Sabban formulas (3.2), we have (3.4). 
 

Corollary 3.2. All of timelike biharmonic S-curves in  2
1 H

S  are helices. 

  

Theorem 3.3. Let  be a unit speed non-geodesic timelike biharmonic S-

curve. Then, the parametric equations of 

 2
1 H

: I S 

  are 
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where  are constants of integration and 4321 ,,, BBBB
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Proof: Since   is timelike biharmonic,   is a S helix. So, without loss of 

generality, we take the axis of   is parallel to the vector . Then, 1e
 

  ,sinh== 11 Atg et,                                                       (3.6) 
 

where A  is constant angle. 
So, substituting the components   and  in the equation (3.3), we have the 

following equation 

,1t 2t 3t

 
    .coshcoshsinhcoshsinh= 321 eeet   AAA               (3.7) 

 
Using the formula of the Sabban, we write a relation: 

 
.)()(= 3213231211 eeett ttttttt '''                                   (3.8) 

 
From above equation, we have 
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where  is a constant of integration. 1B

Thus (3.7) and (3.9), imply 
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Using (2.1) in (3.10), we obtain 
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Integrating both sides, we have (3.5). This proves our assertion. Thus, the proof of 

theorem is completed. 
We can use Mathematica in above theorem, yields 
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