ORIGINAL PAPER TIMELIKE BIHARMONIC S-CURVES ACCORDING TO SABBAN FRAME IN $(S_1^2)_{\mu}$

TALAT KÖRPINAR¹, ESSIN TURHAN¹

Manuscript received: 13.04.2012; Accepted paper: 02.05.2012; Published online: 15.06.2012.

Abstract. In this paper, we study timelike biharmonic curves according to Sabban frame in the $(S_1^2)_{H}$. We characterize the timelike biharmonic curves in terms of their geodesic curvature. Finally, we find out their explicit parametric equations according to Sabban Frame.

Keywords: Biharmonic curve, Heisenberg group, Geodesic curvature. *Mathematics Subject Classifications:* 53C41, 53A10.

1. INTRODUCTION

A smooth map $\phi: N \to M$ is said to be biharmonic if it is a critical point of the bienergy functional:

$$E_2(\phi) = \int_N \frac{1}{2} |\mathsf{T}(\phi)|^2 dv_h,$$

where $\mathsf{T}(\phi) := \mathrm{tr} \nabla^{\phi} d\phi$ is the tension field of ϕ .

The Euler--Lagrange equation of the bienergy is given by $T_2(\phi) = 0$. Here the section $T_2(\phi)$ is defined by

$$\mathsf{T}_{2}(\phi) = -\Delta_{\phi} \mathsf{T}(\phi) + \mathrm{tr}R(\mathsf{T}(\phi), d\phi)d\phi, \qquad (1.1)$$

and called the bitension field of ϕ . Non-harmonic biharmonic maps are called proper biharmonic maps.

This study is organised as follows: Firstly, we study timelike biharmonic curves accordig to Sabban frame in the Heisenberg group Heis³. Secondly, we characterize the timelike biharmonic curves in terms of their geodesic curvature and we prove that all of biharmonic curves are helices in the Heisenberg group Heis³. Finally, we find out their explicit parametric equations according to Sabban Frame.

¹ Firat University, Department of Mathematics, 23119, Elazig, Turkey. E-mails: <u>talatkorpinar@gmail.com</u>, <u>essin.turhan@gmail.com</u>.

2. THE LORENTZIAN HEISENBERG GROUP H

Heisenberg group H can be seen as the space R^3 endowed with the following multiplication:

$$(\bar{x}, \bar{y}, \bar{z})(x, y, z) = (\bar{x} + x, \bar{y} + y, \bar{z} + z - \frac{1}{2}\bar{x}y + \frac{1}{2}\bar{x}\bar{y})$$

Heis³ is a three-dimensional, connected, simply connected and 2-step nilpotent Lie group.

The identity of the group is (0,0,0) and the inverse of (x, y, z) is given by (-x, -y, -z). The left-invariant Lorentz metric on H is

$$g = -dx^2 + dy^2 + (xdy + dz)^2$$

The following set of left-invariant vector fields forms an orthonormal basis for the corresponding Lie algebra:

$$\left\{ \mathbf{e}_1 = \frac{\partial}{\partial z}, \mathbf{e}_2 = \frac{\partial}{\partial y} - x \frac{\partial}{\partial z}, \mathbf{e}_3 = \frac{\partial}{\partial x} \right\}.$$
 (2.1)

The characterising properties of this algebra are the following commutation relations:

$$g(\mathbf{e}_1, \mathbf{e}_1) = g(\mathbf{e}_2, \mathbf{e}_2) = 1, g(\mathbf{e}_3, \mathbf{e}_3) = -1.$$

Proposition 2.1. For the covariant derivatives of the Levi-Civita connection of the left-invariant metric g, defined above the following is true:

$$\nabla = \frac{1}{2} \begin{pmatrix} \mathbf{0} & \mathbf{e}_3 & \mathbf{e}_2 \\ \mathbf{e}_3 & \mathbf{0} & \mathbf{e}_1 \\ \mathbf{e}_2 & -\mathbf{e}_1 & \mathbf{0} \end{pmatrix},$$
(2.2)

where the (i, j)-element in the table above equals $\nabla_{\mathbf{e}_i} \mathbf{e}_j$ for our basis $\{\mathbf{e}_k, k = 1, 2, 3\}$.

The unit pseudo-Heisenberg sphere (Lorentzian Heisenberg sphere) is defined by

$$\left(\mathsf{S}_{1}^{2}\right)_{\mathsf{H}} = \left\{\boldsymbol{\beta} \in \mathsf{H} : g\left(\boldsymbol{\beta}, \boldsymbol{\beta}\right) = 1\right\}.$$

We adopt the following notation and sign convention for Riemannian curvature operator:

$$R(X,Y)Z = \nabla_X \nabla_Y Z - \nabla_Y \nabla_X Z - \nabla_{X,Y]}Z.$$

The Riemannian curvature tensor is given by

$$R(X,Y,Z,W) = -g(R(X,Y)Z,W).$$

Moreover we put

$$R_{ijk} = R(\mathbf{e}_i, \mathbf{e}_j)\mathbf{e}_k, \ R_{ijkl} = R(\mathbf{e}_i, \mathbf{e}_j, \mathbf{e}_k, \mathbf{e}_l),$$

where the indices i, j, k and l take the values 1,2 and 3.

$$R_{121} = \frac{1}{4}\mathbf{e}_2, R_{131} = \frac{1}{4}\mathbf{e}_3, R_{232} = -\frac{3}{4}\mathbf{e}_3$$

and

$$R_{1212} = -\frac{1}{4}, R_{1313} = \frac{1}{4}, R_{2323} = -\frac{3}{4}.$$
 (2.3)

3. TIMELIKE BIHARMONIC S-CURVES ACCORDING TO SABBAN FRAME IN THE $\left(S_1^2\right)_{II}$

Let $\gamma: I \to H$ be a timelike curve in the Lorentzian Heisenberg group H parametrized by arc length. Let {**T**, **N**, **B**} be the Frenet frame fields tangent to the Lorentzian Heisenberg group H along γ defined as follows:

T is the unit vector field γ' tangent to γ , **N** is the unit vector field in the direction of $\nabla_{\mathbf{T}} \mathbf{T}$ (normal to γ), and **B** is chosen so that {**T**,**N**,**B**} is a positively oriented orthonormal basis. Then, we have the following Frenet formulas:

$$\nabla_{\mathbf{T}} \mathbf{T} = \kappa \mathbf{N},$$

$$\nabla_{\mathbf{T}} \mathbf{N} = \kappa \mathbf{T} + \tau \mathbf{B},$$

$$\nabla_{\mathbf{T}} \mathbf{B} = -\tau \mathbf{N},$$
(3.1)

where κ is the curvature of γ and τ is its torsion,

$$g(\mathbf{T}, \mathbf{T}) = -1, g(\mathbf{N}, \mathbf{N}) = 1, g(\mathbf{B}, \mathbf{B}) = 1,$$

$$g(\mathbf{T}, \mathbf{N}) = g(\mathbf{T}, \mathbf{B}) = g(\mathbf{N}, \mathbf{B}) = 0.$$

Now we give a new frame different from Frenet frame. Let $\alpha: I \to (S_1^2)_{H}$ be unit speed spherical timelike curve. We denote σ as the arc-length parameter of α . Let us denote $\mathbf{t}(\sigma) = \alpha'(\sigma)$, and we call $\mathbf{t}(\sigma)$ a unit tangent vector of α . We now set a vector $\mathbf{s}(\sigma) = \alpha(\sigma) \times \mathbf{t}(\sigma)$ along α . This frame is called the Sabban frame of α on $(\mathbf{S}_1^2)_{\mathbf{H}}$. Then we have the following spherical Frenet-Serret formulae of α :

$$\alpha' = \mathbf{t},$$

$$\mathbf{t}' = \alpha + \kappa_g \mathbf{s},$$

$$\mathbf{s}' = \kappa_g \mathbf{t},$$

(3.2)

where κ_g is the geodesic curvature of the timelike curve α on the $(S_1^2)_H$ and

$$g(\mathbf{t}, \mathbf{t}) = -1, g(\alpha, \alpha) = 1, g(\mathbf{s}, \mathbf{s}) = 1,$$

$$g(\mathbf{t}, \alpha) = g(\mathbf{t}, \mathbf{s}) = g(\alpha, \mathbf{s}) = 0.$$

With respect to the orthonormal basis $\{e_1, e_2, e_3\}$, we can write

$$\alpha = \alpha_1 \mathbf{e}_1 + \alpha_2 \mathbf{e}_2 + \alpha_3 \mathbf{e}_3,$$

$$\mathbf{t} = t_1 \mathbf{e}_1 + t_2 \mathbf{e}_2 + t_3 \mathbf{e}_3,$$

$$\mathbf{s} = s_1 \mathbf{e}_1 + s_2 \mathbf{e}_2 + s_3 \mathbf{e}_3.$$
(3.3)

To separate a biharmonic curve according to Sabban frame from that of Frenet-Serret frame, in the rest of the paper, we shall use notation for the curve defined above as biharmonic S-curve.

Theorem 3.1.

is a timelike biharmonic S-curve if and only if $\kappa_g = \text{constant} \neq 0$,

$$1 + \kappa_g^2 = \left[-\frac{1}{4} + \frac{1}{2} s_1^2 \right] + \kappa_g [\alpha_1 s_1],$$

$$\kappa_g^3 = \alpha_3 s_3 - \kappa_g \left[\frac{1}{4} - \frac{1}{2} \alpha_1^2 \right].$$
(3.4)

Proof: Using (2.1) and Sabban formulas (3.2), we have (3.4).

Corollary 3.2. All of timelike biharmonic S-curves in $(S_1^2)_{H}$ are helices.

Theorem 3.3. Let $\alpha: I \to (S_1^2)_H$ be a unit speed non-geodesic timelike biharmonic Scurve. Then, the parametric equations of α are

$$x^{s}(\sigma) = \frac{\cosh A}{B_{0}} \sinh[B_{0}\sigma + B_{1}] + B_{2},$$

$$y^{s}(\sigma) = \frac{\cosh A}{B_{0}} \cosh[B_{0}\sigma + B_{1}] + B_{3},$$

$$z^{s}(\sigma) = \sinh A\sigma + \frac{\cosh^{2} A}{2B_{0}^{2}} [B_{0}\sigma + B_{1}] - \frac{\cosh^{2} A}{4B_{0}^{2}} \sinh 2[B_{0}\sigma + B_{1}]$$

$$- \frac{B_{2}}{B_{0}} \cosh A \cosh[B_{0}\sigma + B_{1}] + B_{4},$$

(3.5)

where B_1, B_2, B_3, B_4 are constants of integration and

$$\mathsf{B}_0 = \frac{\sqrt{1 + \kappa_g^2}}{\cosh \mathsf{A}} - \sinh \mathsf{A}$$

www.josa.ro

Mathematics Section

Proof: Since α is timelike biharmonic, α is a S-helix. So, without loss of generality, we take the axis of α is parallel to the vector \mathbf{e}_1 . Then,

$$g(\mathbf{t}, \mathbf{e}_1) = t_1 = \sinh \mathsf{A},\tag{3.6}$$

where A is constant angle.

So, substituting the components t_1 , t_2 and t_3 in the equation (3.3), we have the following equation

$$\mathbf{t} = \sinh \mathbf{A} \mathbf{e}_1 + \cosh \mathbf{A} \sinh \Pi(\boldsymbol{\sigma}) \mathbf{e}_2 + \cosh \mathbf{A} \cosh \Pi(\boldsymbol{\sigma}) \mathbf{e}_3.$$
(3.7)

Using the formula of the Sabban, we write a relation:

$$\nabla_{\mathbf{t}}\mathbf{t} = t_{1}\mathbf{e}_{1} + (t_{2} + t_{1}t_{3})\mathbf{e}_{2} + (t_{3} + t_{1}t_{2})\mathbf{e}_{3}.$$
(3.8)

From above equation, we have

$$\Pi(\sigma) = \left(\frac{\sqrt{1 + \kappa_g^2}}{\cosh A} - \sinh A\right)\sigma + B_1, \qquad (3.9)$$

where B_1 is a constant of integration.

Thus (3.7) and (3.9), imply

$$\mathbf{t} = \sinh A \mathbf{e}_{1} + \cosh A \sinh[(\frac{\sqrt{1 + \kappa_{g}^{2}}}{\cosh A} - \sinh A)\sigma + \mathbf{B}_{1}]\mathbf{e}_{2}$$

+ $\cosh A \cosh[(\frac{\sqrt{1 + \kappa_{g}^{2}}}{\cosh A} - \sinh A)\sigma + \mathbf{B}_{1}]\mathbf{e}_{3}.$ (3.10)

Using (2.1) in (3.10), we obtain

$$\mathbf{t} = (\cosh A \cosh[\mathsf{B}_0 \sigma + \mathsf{B}_1], \cosh A \sinh[\mathsf{B}_0 \sigma + \mathsf{B}_1],$$

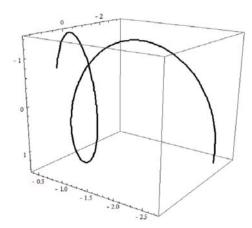
$$\sinh A + \cosh A(\frac{\cosh A}{\mathsf{B}_0} \sinh[\mathsf{B}_0 \sigma + \mathsf{B}_1] + \mathsf{B}_2) \sinh[\mathsf{B}_0 \sigma + \mathsf{B}_1]),$$

where B_1, B_2 are constants of integration and

$$\mathsf{B}_0 = \frac{\sqrt{1 + \kappa_g^2}}{\cosh \mathsf{A}} - \sinh \mathsf{A}.$$

Integrating both sides, we have (3.5). This proves our assertion. Thus, the proof of theorem is completed.

We can use Mathematica in above theorem, yields



REFERENCES

- [1] Babaarslan, M,. Yayli, Y., On spacelike constant slope surfaces and Bertrand curves in Minkowski 3-space, arXiv: 1112.1504v2, 2012.
- [2] Caddeo, R., Montaldo, S., Internat. J. Math., 12(8), 867, 2001.
- [3] Chen, B.Y., Soochow J. Math., 17, 169, 1991.
- [4] Dimitric, I., Bull. Inst. Math. Acad. Sinica, 20, 53, 1992.
- [5] Eells, J., Lemaire, L., Bull. London Math. Soc., 10, 1, 1978.
- [6] Eells, J., Sampson, J.H., Amer. J. Math., 86, 109, 1964.
- [7] Jiang, G.Y., Chinese Ann. Math. Ser. A, 7(2), 130, 1986.
- [8] Jiang, G.Y., Chinese Ann. Math. Ser. A, 7(4), 389, 1986.
- [9] Körpinar, T., Turhan, E., *Bol. Soc. Paran. Mat.*, **31**(1), 205, 2013.
- [10] Loubeau, E., Montaldo, S., *Biminimal immersions in space forms*, math.DG/0405320 v1, 2004.
- [11] O'Neill, B., Semi-Riemannian Geometry, Academic Press, New York, 1983.
- [12] Rahmani, S., Journal of Geometry and Physics, 9, 295, 1992.
- [13] Turhan, E., Körpinar, T., Bol. Soc. Paran. Mat., 31(1), 99, 2013.
- [14] Turhan, E., Körpinar, T., Zeitschrift für Naturforschung A- A Journal of Physical Sciences, **65a**, 641, 2010.
- [15] Turhan, E., Körpinar, T., Zeitschrift für Naturforschung A- A Journal of Physical Sciences, 66a, 441, 2011.