TIMELIKE BIHARMONIC S-CURVES ACCORDING TO SABBAN FRAME IN $\left(\mathrm{S}_{1}^{2}\right)_{H}$

TALAT KÖRPINAR ${ }^{1}$, ESSIN TURHAN ${ }^{1}$
Manuscript received: 13.04.2012; Accepted paper: 02.05.2012;
Published online: 15.06.2012.

Abstract

In this paper, we study timelike biharmonic curves according to Sabban frame in the $\left(\mathrm{S}_{1}^{2}\right)_{\mathrm{H}}$. We characterize the timelike biharmonic curves in terms of their geodesic curvature. Finally, we find out their explicit parametric equations according to Sabban Frame.

Keywords: Biharmonic curve, Heisenberg group, Geodesic curvature.
Mathematics Subject Classifications: 53C41, 53A10.

1. INTRODUCTION

A smooth map $\phi: N \rightarrow M$ is said to be biharmonic if it is a critical point of the bienergy functional:

$$
E_{2}(\phi)=\int_{N} \frac{1}{2}|\mathrm{~T}(\phi)|^{2} d v_{h}
$$

where $T(\phi):=\operatorname{tr}^{\phi} d \phi$ is the tension field of ϕ.
The Euler--Lagrange equation of the bienergy is given by $\mathrm{T}_{2}(\phi)=0$. Here the section $\mathrm{T}_{2}(\phi)$ is defined by

$$
\begin{equation*}
\mathrm{T}_{2}(\phi)=-\Delta_{\phi} \mathrm{T}(\phi)+\operatorname{tr} R(\mathrm{~T}(\phi), d \phi) d \phi \tag{1.1}
\end{equation*}
$$

and called the bitension field of ϕ. Non-harmonic biharmonic maps are called proper biharmonic maps.

This study is organised as follows: Firstly, we study timelike biharmonic curves accordig to Sabban frame in the Heisenberg group Heis ${ }^{3}$. Secondly, we characterize the timelike biharmonic curves in terms of their geodesic curvature and we prove that all of biharmonic curves are helices in the Heisenberg group Heis ${ }^{3}$. Finally, we find out their explicit parametric equations according to Sabban Frame.

[^0]
2. THE LORENTZIAN HEISENBERG GROUP H

Heisenberg group H can be seen as the space R^{3} endowed with the following multiplication:

$$
(\bar{x}, \bar{y}, \bar{z})(x, y, z)=\left(\bar{x}+x, \bar{y}+y, \bar{z}+z-\frac{1}{2} \bar{x} y+\frac{1}{2} x \bar{y}\right)
$$

Heis 3 is a three-dimensional, connected, simply connected and 2-step nilpotent Lie group.

The identity of the group is $(0,0,0)$ and the inverse of (x, y, z) is given by $(-x,-y,-z)$. The left-invariant Lorentz metric on H is

$$
g=-d x^{2}+d y^{2}+(x d y+d z)^{2} .
$$

The following set of left-invariant vector fields forms an orthonormal basis for the corresponding Lie algebra:

$$
\begin{equation*}
\left\{\mathbf{e}_{1}=\frac{\partial}{\partial z}, \mathbf{e}_{2}=\frac{\partial}{\partial y}-x \frac{\partial}{\partial z}, \mathbf{e}_{3}=\frac{\partial}{\partial x}\right\} . \tag{2.1}
\end{equation*}
$$

The characterising properties of this algebra are the following commutation relations:

$$
g\left(\mathbf{e}_{1}, \mathbf{e}_{1}\right)=g\left(\mathbf{e}_{2}, \mathbf{e}_{2}\right)=1, g\left(\mathbf{e}_{3}, \mathbf{e}_{3}\right)=-1 .
$$

Proposition 2.1. For the covariant derivatives of the Levi-Civita connection of the left-invariant metric g, defined above the following is true:

$$
\nabla=\frac{1}{2}\left(\begin{array}{ccc}
0 & \mathbf{e}_{3} & \mathbf{e}_{2} \tag{2.2}\\
\mathbf{e}_{3} & 0 & \mathbf{e}_{1} \\
\mathbf{e}_{2} & -\mathbf{e}_{1} & 0
\end{array}\right),
$$

where the (i, j) -element in the table above equals $\nabla_{\mathbf{e}_{i}} \mathbf{e}_{j}$ for our basis $\left\{\mathbf{e}_{k}, k=1,2,3\right\}$.
The unit pseudo-Heisenberg sphere (Lorentzian Heisenberg sphere) is defined by

$$
\left(\mathrm{S}_{1}^{2}\right)_{\mathrm{H}}=\{\boldsymbol{\beta} \in \mathrm{H}: g(\boldsymbol{\beta}, \boldsymbol{\beta})=1\} .
$$

We adopt the following notation and sign convention for Riemannian curvature operator:

$$
R(X, Y) Z=\nabla_{X} \nabla_{Y} Z-\nabla_{Y} \nabla_{X} Z-\nabla_{X, Y]} Z .
$$

The Riemannian curvature tensor is given by

$$
R(X, Y, Z, W)=-g(R(X, Y) Z, W)
$$

Moreover we put

$$
R_{i j k}=R\left(\mathbf{e}_{i}, \mathbf{e}_{j}\right) \mathbf{e}_{k}, R_{i j k l}=R\left(\mathbf{e}_{i}, \mathbf{e}_{j}, \mathbf{e}_{k}, \mathbf{e}_{l}\right),
$$

where the indices i, j, k and l take the values 1,2 and 3 .

$$
R_{121}=\frac{1}{4} \mathbf{e}_{2}, R_{131}=\frac{1}{4} \mathbf{e}_{3}, R_{232}=-\frac{3}{4} \mathbf{e}_{3}
$$

and

$$
\begin{equation*}
R_{1212}=-\frac{1}{4}, R_{1313}=\frac{1}{4}, R_{2323}=-\frac{3}{4} . \tag{2.3}
\end{equation*}
$$

3. TIMELIKE BIHARMONIC S-CURVES ACCORDING TO SABBAN FRAME IN THE $\left(S_{1}^{2}\right)_{H}$

Let $\gamma: I \rightarrow \mathrm{H}$ be a timelike curve in the Lorentzian Heisenberg group H parametrized by arc length. Let $\{\mathbf{T}, \mathbf{N}, \mathbf{B}\}$ be the Frenet frame fields tangent to the Lorentzian Heisenberg group H along γ defined as follows:
\mathbf{T} is the unit vector field γ^{\prime} tangent to γ, \mathbf{N} is the unit vector field in the direction of $\nabla_{\mathbf{T}} \mathbf{T}$ (normal to γ), and \mathbf{B} is chosen so that $\{\mathbf{T}, \mathbf{N}, \mathbf{B}\}$ is a positively oriented orthonormal basis. Then, we have the following Frenet formulas:

$$
\begin{gather*}
\nabla_{\mathbf{T}} \mathbf{T}=\kappa \mathbf{N}, \\
\nabla_{{ }_{\mathbf{T}}} \mathbf{N}=\kappa \boldsymbol{T}+\tau \mathbf{B}, \tag{3.1}\\
\nabla_{\mathbf{T}} \mathbf{B}=-\tau \mathbf{N},
\end{gather*}
$$

where κ is the curvature of γ and τ is its torsion,

$$
\begin{gathered}
g(\mathbf{T}, \mathbf{T})=-1, g(\mathbf{N}, \mathbf{N})=1, g(\mathbf{B}, \mathbf{B})=1 \\
g(\mathbf{T}, \mathbf{N})=g(\mathbf{T}, \mathbf{B})=g(\mathbf{N}, \mathbf{B})=0 .
\end{gathered}
$$

Now we give a new frame different from Frenet frame. Let $\alpha: I \rightarrow\left(\mathrm{~S}_{1}^{2}\right)_{H}$ be unit speed spherical timelike curve. We denote σ as the arc-length parameter of α. Let us denote $\mathbf{t}(\sigma)=\alpha^{\prime}(\sigma)$, and we call $\mathbf{t}(\sigma)$ a unit tangent vector of α. We now set a vector $\mathbf{s}(\sigma)=\alpha(\sigma) \times \mathbf{t}(\sigma)$ along α. This frame is called the Sabban frame of α on $\left(\mathrm{S}_{1}^{2}\right)_{\mathrm{H}}$. Then we have the following spherical Frenet-Serret formulae of α :

$$
\begin{gather*}
\alpha^{\prime}=\mathbf{t} \\
\mathbf{t}^{\prime}=\alpha+\kappa_{g} \mathbf{s} \tag{3.2}\\
\mathbf{s}^{\prime}=\kappa_{g} \mathbf{t}
\end{gather*}
$$

where κ_{g} is the geodesic curvature of the timelike curve α on the $\left(\mathrm{S}_{1}^{2}\right)_{H}$ and

$$
\begin{gathered}
g(\mathbf{t}, \mathbf{t})=-1, g(\alpha, \alpha)=1, g(\mathbf{s}, \mathbf{s})=1 \\
g(\mathbf{t}, \alpha)=g(\mathbf{t}, \mathbf{s})=g(\alpha, \mathbf{s})=0
\end{gathered}
$$

With respect to the orthonormal basis $\left\{\mathbf{e}_{1}, \mathbf{e}_{2}, \mathbf{e}_{3}\right\}$, we can write

$$
\begin{align*}
\alpha & =\alpha_{1} \mathbf{e}_{1}+\alpha_{2} \mathbf{e}_{2}+\alpha_{3} \mathbf{e}_{3}, \\
\mathbf{t} & =t_{1} \mathbf{e}_{1}+t_{2} \mathbf{e}_{2}+t_{3} \mathbf{e}_{3}, \tag{3.3}\\
\mathbf{s} & =s_{1} \mathbf{e}_{1}+s_{2} \mathbf{e}_{2}+s_{3} \mathbf{e}_{3} .
\end{align*}
$$

To separate a biharmonic curve according to Sabban frame from that of Frenet- Serret frame, in the rest of the paper, we shall use notation for the curve defined above as biharmonic S-curve.

Theorem 3.1.

is a timelike biharmonic S-curve if and only if $\kappa_{\mathrm{g}}=$ constant $\neq 0$,

$$
\begin{align*}
1+\kappa_{g}^{2} & =\left[-\frac{1}{4}+\frac{1}{2} s_{1}^{2}\right]+\kappa_{g}\left[\alpha_{1} s_{1}\right], \\
\kappa_{g}^{3} & =\alpha_{3} s_{3}-\kappa_{g}\left[\frac{1}{4}-\frac{1}{2} \alpha_{1}^{2}\right] . \tag{3.4}
\end{align*}
$$

Proof: Using (2.1) and Sabban formulas (3.2), we have (3.4).
Corollary 3.2. All of timelike biharmonic S-curves in $\left(\mathrm{S}_{1}^{2}\right)_{\mathrm{H}}$ are helices.

Theorem 3.3. Let $\alpha: I \rightarrow\left(S_{1}^{2}\right)_{H}$ be a unit speed non-geodesic timelike biharmonic Scurve. Then, the parametric equations of α are

$$
\begin{gathered}
x^{\mathrm{s}}(\sigma)=\frac{\cosh \mathrm{A}}{\mathrm{~B}_{0}} \sinh \left[\mathrm{~B}_{0} \sigma+\mathrm{B}_{1}\right]+\mathrm{B}_{2}, \\
y^{\mathrm{s}}(\sigma)=\frac{\cosh \mathrm{A}}{\mathrm{~B}_{0}} \cosh \left[\mathrm{~B}_{0} \sigma+\mathrm{B}_{1}\right]+\mathrm{B}_{3}, \\
z^{\mathrm{s}}(\sigma)=\sinh \mathrm{A} \sigma+\frac{\cosh ^{2} \mathrm{~A}}{2 \mathrm{~B}_{0}^{2}}\left[\mathrm{~B}_{0} \sigma+\mathrm{B}_{1}\right]-\frac{\cosh ^{2} \mathrm{~A}}{4 \mathrm{~B}_{0}^{2}} \sinh 2\left[\mathrm{~B}_{0} \sigma+\mathrm{B}_{1}\right] \\
-\frac{\mathrm{B}_{2}}{\mathrm{~B}_{0}} \cosh \mathrm{~A} \cosh \left[\mathrm{~B}_{0} \sigma+\mathrm{B}_{1}\right]+\mathrm{B}_{4},
\end{gathered}
$$

where $B_{1}, B_{2}, B_{3}, B_{4}$ are constants of integration and

$$
\mathrm{B}_{0}=\frac{\sqrt{1+\kappa_{g}^{2}}}{\cosh \mathrm{~A}}-\sinh \mathrm{A} .
$$

Proof: Since α is timelike biharmonic, α is a S -helix. So, without loss of generality, we take the axis of α is parallel to the vector \mathbf{e}_{1}. Then,

$$
\begin{equation*}
g\left(\mathbf{t}, \mathbf{e}_{1}\right)=t_{1}=\sinh \mathrm{A}, \tag{3.6}
\end{equation*}
$$

where A is constant angle.
So, substituting the components t_{1}, t_{2} and t_{3} in the equation (3.3), we have the following equation

$$
\begin{equation*}
\mathbf{t}=\sinh \mathrm{A} \mathbf{e}_{1}+\cosh \mathrm{A} \sinh \Pi(\sigma) \mathbf{e}_{2}+\cosh \mathrm{A} \cosh \Pi(\sigma) \mathbf{e}_{3} . \tag{3.7}
\end{equation*}
$$

Using the formula of the Sabban, we write a relation:

$$
\begin{equation*}
\nabla_{\mathbf{t}} \mathbf{t}=t_{1}^{\prime} \mathbf{e}_{1}+\left(t_{2}^{\prime}+t_{1} t_{3}\right) \mathbf{e}_{2}+\left(t_{3}^{\prime}+t_{1} t_{2}\right) \mathbf{e}_{3} . \tag{3.8}
\end{equation*}
$$

From above equation, we have

$$
\begin{equation*}
\Pi(\sigma)=\left(\frac{\sqrt{1+\kappa_{g}^{2}}}{\cosh \mathrm{~A}}-\sinh \mathrm{A}\right) \sigma+\mathrm{B}_{1}, \tag{3.9}
\end{equation*}
$$

where B_{1} is a constant of integration.
Thus (3.7) and (3.9), imply

$$
\begin{align*}
\mathbf{t}= & \sinh \mathrm{A} \mathbf{e}_{1}+\cosh \mathrm{A} \sinh \left[\left(\frac{\sqrt{1+\kappa_{g}^{2}}}{\cosh \mathrm{~A}}-\sinh \mathrm{A}\right) \sigma+\mathrm{B}_{1}\right] \mathbf{e}_{2} \\
& +\cosh \mathrm{A} \cosh \left[\left(\frac{\sqrt{1+\kappa_{g}^{2}}}{\cosh \mathrm{~A}}-\sinh \mathrm{A}\right) \sigma+\mathrm{B}_{1}\right] \mathbf{e}_{3} . \tag{3.10}
\end{align*}
$$

Using (2.1) in (3.10), we obtain

$$
\begin{gathered}
\mathbf{t}=\left(\cosh \mathrm{A} \cosh \left[\mathrm{~B}_{0} \sigma+\mathrm{B}_{1}\right], \cosh \mathrm{A} \sinh \left[\mathrm{~B}_{0} \sigma+\mathrm{B}_{1}\right],\right. \\
\left.\sinh \mathrm{A}+\cosh \mathrm{A}\left(\frac{\cosh \mathrm{~A}}{\mathrm{~B}_{0}} \sinh \left[\mathrm{~B}_{0} \sigma+\mathrm{B}_{1}\right]+\mathrm{B}_{2}\right) \sinh \left[\mathrm{B}_{0} \sigma+\mathrm{B}_{1}\right]\right),
\end{gathered}
$$

where B_{1}, B_{2} are constants of integration and

$$
\mathrm{B}_{0}=\frac{\sqrt{1+\kappa_{g}^{2}}}{\cosh \mathrm{~A}}-\sinh \mathrm{A} .
$$

Integrating both sides, we have (3.5). This proves our assertion. Thus, the proof of theorem is completed.

We can use Mathematica in above theorem, yields

REFERENCES

[1] Babaarslan, M,. Yayli, Y., On spacelike constant slope surfaces and Bertrand curves in Minkowski 3-space, arXiv: 1112.1504v2, 2012.
[2] Caddeo, R., Montaldo, S., Internat. J. Math., 12(8), 867, 2001.
[3] Chen, B.Y., Soochow J. Math., 17, 169, 1991.
[4] Dimitric, I., Bull. Inst. Math. Acad. Sinica, 20, 53, 1992.
[5] Eells, J., Lemaire, L., Bull. London Math. Soc., 10, 1, 1978.
[6] Eells, J., Sampson, J.H., Amer. J. Math., 86, 109, 1964.
[7] Jiang, G.Y., Chinese Ann. Math. Ser. A, 7(2), 130, 1986.
[8] Jiang, G.Y., Chinese Ann. Math. Ser. A, 7(4), 389, 1986.
[9] Körpınar, T., Turhan, E., Bol. Soc. Paran. Mat., 31(1), 205, 2013.
[10] Loubeau, E., Montaldo, S., Biminimal immersions in space forms, math.DG/0405320 v1, 2004.
[11] O'Neill, B., Semi-Riemannian Geometry, Academic Press, New York, 1983.
[12] Rahmani, S., Journal of Geometry and Physics, 9, 295, 1992.
[13] Turhan, E., Körpınar, T., Bol. Soc. Paran. Mat., 31(1), 99, 2013.
[14] Turhan, E., Körpınar, T., Zeitschrift für Naturforschung A- A Journal of Physical Sciences, 65a, 641, 2010.
[15] Turhan, E., Körpınar, T., Zeitschrift für Naturforschung A- A Journal of Physical Sciences, 66a, 441, 2011.

[^0]: ${ }^{1}$ Fırat University, Department of Mathematics, 23119, Elazig, Turkey. E-mails: talatkorpinar@gmail.com, essin.turhan@gmail.com.

