ON AN INEQUALITY FOR THE MEDIANS OF A TRIANGLE

JIAN LIU ${ }^{1}$

Manuscript received: 10.05.2012; Accepted paper: 23.05.2012;
Published online: 15.06.2012.

Abstract

In this paper, we give two new simpler proofs of a sharp inequality for the medians of a triangle. We also establish two new inequalities by using this sharp inequality. Some related conjectures checked by the computer are put forward, which include two conjectures related to the famous Erdös-Mordell inequality.

Keywords: triangle, median, inequality, Erdös-Mordell inequality 2000 Mathematics Subject Classification: 51M16.

1. INTRODUCTION

In 2000, X.G. Chu and X.Z.Yang [1] established the following geometric inequality: Let $A B C$ be a triangle with medians m_{a}, m_{b}, m_{c}, circumradius R, inradius r and semiperimeter s. Then the following inequality holds:

$$
\begin{equation*}
\left(m_{a}+m_{b}+m_{c}\right)^{2} \leq 4 s^{2}-16 R r+5 r^{2}, \tag{1.1}
\end{equation*}
$$

with equality if and only if $\triangle A B C$ is equilateral.
This is a strong inequality and has some applications (see e.g. [1], [2]). In my recent paper [3], I have shown that the combinational coefficients in (1.1) is the best possible. In fact, by Theorem 2 in [3] it is easy to prove the following conclusion: For all inequalities in the form

$$
\begin{equation*}
\left(m_{a}+m_{b}+m_{c}\right)^{2} \leq k_{1} s^{2}+k_{2} R r+k_{3} r^{2}, \tag{1.2}
\end{equation*}
$$

inequality (1.1) is the best possible, where k_{1}, k_{2}, k_{3} are constants and satisfy $27 k_{1}+2 k_{2}+k_{3}$ $=81$.

On the other hand, it is interesting that there exists the following sharp inequality (1.3) which is stronger than (1.1):

Theorem 1. In any triangle $A B C$ with sides a, b, c, medians m_{a}, m_{b}, m_{c}, inradius r, and circumradius R, the following inequality holds:

$$
\begin{equation*}
\frac{\left(m_{a}+m_{b}+m_{c}\right)^{2}}{a^{2}+b^{2}+c^{2}} \leq 2+\frac{r^{2}}{R^{2}}, \tag{1.3}
\end{equation*}
$$

[^0]
with equality if and only if triangle $A B C$ is equilateral.

Remark 1.1. If $\triangle A B C$ might be a degenerate triangle, then the equality in (1.3) would also arrive at the case when $A=0, B=C=\frac{\pi}{2}$. This fact shows inequality (1.3) is sharp.
H.Y.Yin first posed an equivalent form of (1.3) when the inequality (1.1) just had been set up (see [3], [4]). Until recently, (1.3) has been proved by the author in [3]. However, this proof is very complicated. The author used a lemma in [1], i.e. the inequality:

$$
\begin{equation*}
4 m_{b} m_{c} \leq 2 a^{2}+b c-\frac{4 s(s-a)(b-c)^{2}}{2 a^{2}+b c} \tag{1.4}
\end{equation*}
$$

with equality if and only if $b=c$.
In this paper, we give two simpler proofs of Theorem 1, both of which do not depend on (1.4). We also give two applications of Theorem 1. One of them is a beautiful linear inequality involving the medians and the altitudes of a triangle. Another result is about the acute-angled triangle. In the last section, we will propose some related conjectures.

2. NEW PROOFS OF THEOREM 1

In this section, we will give two proofs of Theorem 1. To simplify matter, we denote cyclic sums and cyclic products by Σ, Π respectively.

Proof 1: (The method of $R-r-s$) By Cauchy inequality, we have

$$
\left(\sum m_{a}\right)^{2} \leq \sum\left(b^{2}+c^{2}\right) \sum \frac{m_{a}^{2}}{b^{2}+c^{2}},
$$

i.e.

$$
\begin{equation*}
\left(\sum m_{a}\right)^{2} \leq 2 \sum a^{2} \sum \frac{m_{a}^{2}}{b^{2}+c^{2}} \tag{2.1}
\end{equation*}
$$

Therefore, to prove inequality (1.3) we need to prove that

$$
\begin{equation*}
\sum \frac{m_{a}^{2}}{b^{2}+c^{2}} \leq 1+\frac{r^{2}}{2 R^{2}} . \tag{2.2}
\end{equation*}
$$

Using the known formula $4 m_{a}^{2}=2\left(b^{2}+c^{2}\right)-a^{2}$, it is easily known that inequality (2.2) is equivalent to

$$
\begin{equation*}
\sum \frac{a^{2}}{b^{2}+c^{2}}+\frac{2 r^{2}}{R^{2}} \geq 2 \tag{2.3}
\end{equation*}
$$

Since

$$
\begin{aligned}
& \sum \frac{a^{2}}{b^{2}+c^{2}}+3 \\
& =\sum \frac{a^{2}+b^{2}+c^{2}}{b^{2}+c^{2}}=\sum a^{2} \sum \frac{1}{b^{2}+c^{2}} \\
& =\frac{\sum a^{2} \sum\left(c^{2}+a^{2}\right)\left(a^{2}+b^{2}\right)}{\Pi\left(b^{2}+c^{2}\right)}=\frac{\left(\sum a^{4}+3 \sum b^{2} c^{2}\right) \sum a^{2}}{\Pi\left(b^{2}+c^{2}\right)}
\end{aligned}
$$

hence (2.3) is equivalent to

$$
\frac{\left(\sum a^{4}+3 \sum b^{2} c^{2}\right) \sum a^{2}}{\Pi\left(b^{2}+c^{2}\right)}+\frac{2 r^{2}}{R^{2}}-5 \geq 0
$$

Thus, we have to prove that

$$
\begin{equation*}
X_{1} \equiv R^{2}\left(\sum a^{4}+3 \sum b^{2} c^{2}\right) \sum a^{2}+\left(2 r^{2}-5 R^{2}\right) \Pi\left(b^{2}+c^{2}\right) \geq 0 . \tag{2.4}
\end{equation*}
$$

Using the following known identities (see e.g. [5]):

$$
\begin{align*}
& a b c=4 R r s \tag{2.5}\\
& \sum a^{2}=2 s^{2}-8 R r s-2 r^{2}, \tag{2.6}\\
& \sum b^{2} c^{2}=s^{4}-2(4 R-r) s^{2} r+(4 R+r)^{2} r^{2}, \tag{2.7}\\
& \sum a^{4}=2 s^{4}-4(4 R+3 r) s^{2} r+2(4 R+r)^{2} r^{2}, \tag{2.8}\\
& \Pi\left(b^{2}+c^{2}\right)=2 s^{6}-2(12 R-r) s^{4} r+2\left(40 R^{2}+8 R r-r^{2}\right) s^{2} r^{2}-2(4 R+r)^{3} r^{3} \tag{2.9}
\end{align*}
$$

we obtain

$$
\begin{equation*}
X_{1}=4 r^{2} X_{2} \tag{2.10}
\end{equation*}
$$

where

$$
\begin{align*}
X_{2}= & s^{6}-\left(8 R^{2}+12 R r-r^{2}\right) s^{4}+\left(20 R^{4}+32 R^{3} r+48 R^{2} r^{2}+8 R r^{3}-r^{4}\right) s^{2} \tag{2.11}\\
& -(4 R+r)^{3} r^{3}
\end{align*}
$$

Obviously, the proof of $X_{1} \geq 0$ is changed to $X_{2} \geq 0$. If we put

$$
\begin{aligned}
& G_{2}=4 R^{2}+4 R r+3 r^{2}-s^{2} \\
& T_{0}=-s^{4}+2\left(2 R^{2}+10 R r-r^{2}\right) s^{2}-r(4 R+r)^{3}
\end{aligned}
$$

then it is easy to verify the following identity:

$$
\begin{equation*}
X_{2}=G_{2} T_{0}+X_{3}\left(s^{2}\right), \tag{2.12}
\end{equation*}
$$

where

$$
\begin{aligned}
X_{3}\left(s^{2}\right)= & 2(6 R+r) r s^{4}+\left(4 R^{4}-128 R^{3} r-84 R^{2} r^{2}-56 R r^{3}+4 r^{4}\right) s^{2} \\
& +2\left(2 R^{2}+2 R r+r^{2}\right)(4 R+r)^{3} r .
\end{aligned}
$$

By identity (2.12), Gerretsen inequality $G_{2} \geq 0$ and the fundamental inequality $T_{0} \geq 0$ of triangles (see [5], [6]), to prove $X_{2} \geq 0$ it remains to prove that

$$
\begin{equation*}
X_{3}\left(s^{2}\right) \geq 0 \tag{2.13}
\end{equation*}
$$

Let $K \equiv 4(6 R+r) r s^{2}+\left(4 R^{4}-128 R^{3} r-84 R^{2} r^{2}-56 R r^{3}+4 r^{4}\right)$, then it is easy to show that K may be non-negative and also be negative by giving examples. So we can divide the proof of $X_{3}\left(s^{2}\right) \geq 0$ into the following two cases, i.e. $K \geq 0$ and $K<0$.

Case 1. Assuming $K \geq 0$.
In this case, according to the property of parabolas and the Gerretsen inequalities:

$$
\begin{equation*}
16 R r-5 r^{2} \leq s^{2} \leq 4 R^{2}+4 R r+3 r^{2} \tag{2.14}
\end{equation*}
$$

$X_{3}\left(s^{2}\right)$ is strictly increasing on the interval $\left[16 R r-5 r^{2}, 4 R^{2}+4 R r+3 r^{2}\right]$. So we only need to prove that $X_{3}\left(16 R r-5 r^{2}\right) \geq 0$, but

$$
\begin{aligned}
X_{3}\left(16 R r-5 r^{2}\right)= & 2 r(6 R+r)\left(16 R r-5 r^{2}\right)^{2}+ \\
& \left(4 R^{4}-128 R^{3} r-84 R^{2} r^{2}-56 R r^{3}+4 r^{4}\right)\left(16 R r-5 r^{2}\right)+ \\
& 2\left(2 R^{2}+2 R r+r^{2}\right)(4 R+r)^{3} r \\
= & 4 r\left(80 R^{3}-85 R^{2} r+24 R r^{2}+2 r^{3}\right)(R-2 r)^{2} \geq 0 .
\end{aligned}
$$

The latter inequality follows from Euler inequality $R \geq 2 r$. Hence $X_{3}\left(s^{2}\right) \geq 0$ is proved under the first case.

Case 2. Assuming $K<0$. For this case, it is easy to know that $X_{3}\left(s^{2}\right)$ is decreasing on $\left[16 R r-5 r^{2}, 4 R^{2}+4 R r+3 r^{2}\right]$. Thus we only need to show $X_{3}\left(4 R^{2}+4 R r+3 r^{2}\right) \geq 0$. Simple computations give

$$
X_{3}\left(4 R^{2}+4 R r+3 r^{2}\right)=4\left(4 R^{4}+4 R^{3} r+7 R^{2} r^{2}+4 R r^{3}+2 r^{4}\right)(R-2 r)^{2} \geq 0
$$

Therefore $X_{3}\left(s^{2}\right) \geq 0$ is valid under the second case.
Combing with the arguments of the two cases, $X_{3}\left(s^{2}\right) \geq 0$ holds for all triangle $A B C$. Therefore, (2.4), (2.3), (2.2) and (1.3) are all proved. From the deductions above, it is clear that the equality in (1.3) holds only when $\triangle A B C$ is equilateral. The proof of Theorem 1 is complete.

Proof 2: (The method of the Difference Substitution) Firstly, we can turn the proof of (1.3) into the inequality (2.3) as above. Since

$$
\begin{equation*}
\frac{r}{R}=\frac{\Pi(b+c-a)}{2 a b c} \tag{2.15}
\end{equation*}
$$

thus inequality (2.3) is equivalent to

$$
\begin{equation*}
\sum \frac{a^{2}}{b^{2}+c^{2}}+\frac{\Pi(b+c-a)^{2}}{2(a b c)^{2}} \geq 2 \tag{2.16}
\end{equation*}
$$

i.e.,

$$
\begin{align*}
Y_{0} & \equiv 2(a b c)^{2} \sum a^{2}\left(c^{2}+a^{2}\right)\left(a^{2}+b^{2}\right)+ \\
& +\Pi\left(b^{2}+c^{2}\right) \Pi(b+c-a)^{2}-4(a b c)^{2} \Pi\left(b^{2}+c^{2}\right) \geq 0 \tag{2.17}
\end{align*}
$$

Let $b+c-a=2 x, c+a-b=2 y, a+b-c=2 z$, then $a=y+z, b=z+x, c=x+y$, and we have

$$
\begin{align*}
Y_{0}= & 2 \Pi(y+z)^{2} \sum(y+z)^{2}\left[(x+y)^{2}+(y+z)^{2}\right]\left[(y+z)^{2}+(z+x)^{2}\right] \\
& +\Pi\left[(z+x)^{2}+(x+y)^{2}\right] \Pi x^{2} \tag{2.18}\\
& -4 \Pi(y+z)^{2} \Pi\left[(z+x)^{2}+(x+y)^{2}\right] .
\end{align*}
$$

Because of symmetry, we assume without loss of generality that $x \geq y \geq z$ and let

$$
\left\{\begin{array}{l}
y=z+m \tag{2.19}\\
x=z+m+n
\end{array}\right.
$$

where $m \geq 0$ and $n \geq 0$. Substituting (2.19) into (2.18), with help of the mathematical software we obtain the following identity:

$$
\begin{align*}
Y_{0}= & 1024\left(m^{2}+m n+n^{2}\right)^{2} z^{8}+256(2 m+n)\left(m^{2}+m n+n^{2}\right)\left(13 m^{2}+13 m n+6 n^{2}\right) z^{7}+ \\
& +\left(18816 m^{6}+56448 m^{5} n+79680 m^{4} n^{2}+65280 m^{3} n^{3}+31296 m^{2} n^{4}+8064 m n^{5}+\right. \\
& \left.+896 n^{6}\right) z^{6}+128(2 m+n)\left(118 m^{6}+354 m^{5} n+451 m^{4} n^{2}+312 m^{3} n^{3}+121 m^{2} n^{4}+\right. \\
& \left.+24 m n^{5}+2 n^{6}\right) z^{5}+30112 m^{8}+120448 m^{7} n+202496 m^{6} n^{2}+185920 m^{5} n^{3}+ \\
& \left.+101792 m^{4} n^{4}+3240 m^{3} n^{5}+6976 m^{2} n^{6}+768 m n^{7}+32 n^{8}\right) z^{4}+ \tag{2.20}\\
& +64(2 m+n)(m+n)\left(149 m^{6}+447 m^{5} n+513 m^{4} n^{2}+281 m^{3} n^{3}+79 m^{2} n^{4}+\right. \\
& \left.+13 m n^{5}+n^{6}\right) z^{3} m+16\left(468 m^{6}+1404 m^{5} n+1627 m^{4} n^{2}+914 m^{3} n^{3}+261 m^{2} n^{4}+\right. \\
& \left.+38 m n^{5}+3 n^{6}\right)(m+n)^{2} z^{2} m^{2}+16\left(13 m^{2}+13 m n+n^{2}\right)(2 m+n)^{3}(m+n)^{3} z m^{3}+ \\
& +10(2 m+n)^{4}(m+n)^{4} m^{4} .
\end{align*}
$$

So inequality $Y_{0} \geq 0$ holds obviously by $m \geq 0, n \geq 0$, and $z>0$. Hence (2.17), (2.16) and then (1.3) are proved. The equality in $Y_{0} \geq 0$ holds if and only if $m=n=0$. Further, it is known that the equalities in (2.17) and (1.3) occurs only when $a=b=c$, i.e. $\triangle A B C$ is equilateral. This completes the proof of Theorem 1.

Remark 2.1. From inequality (2.1), using previous methods to prove Theorem 1 we can also prove the following inequality:

$$
\begin{equation*}
\frac{\left(m_{a}+m_{b}+m_{c}\right)^{4}}{b^{2} c^{2}+c^{2} a^{2}+a^{2} b^{2}} \leq 4-\frac{13 r^{2}}{4 R^{2}} \tag{2.21}
\end{equation*}
$$

which is posed by the author in [3].

3. TWO APPLICATIONS OF THEOREM 1

In this section, we will apply Theorem 1 to establish two new triangle inequalities, which are not both proved by using inequality (1.1).

We first prove the following beautiful linear inequality:
Theorem A. For all $\triangle A B C$ holds:

$$
\begin{equation*}
m_{a}+m_{b}+m_{c}-\left(h_{a}+h_{b}+h_{c}\right) \leq 2(R-2 r), \tag{3.1}
\end{equation*}
$$

with equality if and only if $\triangle A B C$ is equilateral.
Proof: By Theorem 1, to prove (3.1) we need to prove that

$$
\begin{equation*}
\left(a^{2}+b^{2}+c^{2}\right)\left(2+\frac{r^{2}}{R^{2}}\right) \leq\left[h_{a}+h_{b}+h_{c}+2(R-2 r)\right]^{2} . \tag{3.2}
\end{equation*}
$$

Multiplying both sides of this inequality by $4 R^{2}$ and using the relation $2 R h_{a}=b c$ etc., inequality (3.2) becomes the following equivalent form:

$$
\begin{equation*}
M_{0} \equiv[b c+c a+a b+4 R(R-2 r)]^{2}-4\left(a^{2}+b^{2}+c^{2}\right)\left(2 R^{2}+r^{2}\right) \geq 0 . \tag{3.3}
\end{equation*}
$$

Applying identity (2.6) and the known identity:

$$
\begin{equation*}
b c+c a+a b=s^{2}+4 R r+r^{2} \tag{3.4}
\end{equation*}
$$

it is easy to get

$$
M_{0}=\left(4 R^{2}+4 R r+3 r^{2}-s^{2}\right)^{2} .
$$

Thus the claimed inequality $M_{0} \geq 0$ follows and (3.1) is proved. It is clear that the equality in (3.1) holds only when $\triangle A B C$ is equilateral. This completes the proof of Theorem A .

Remark 3.1. By the method to prove Theorem 2 in [3], we can prove that the constant 2 of the right side of (3.1) is the best possible. In addition, from Leuenberger's inequality (see [6]):

$$
\begin{equation*}
h_{a}+h_{b}+h_{c} \leq 2 R+5 r, \tag{3.5}
\end{equation*}
$$

we see that inequality (3.1) is stronger than the known result (see [6]):

$$
\begin{equation*}
m_{a}+m_{b}+m_{c} \leq 4 R+r . \tag{3.6}
\end{equation*}
$$

Remark 3.2. By using inequality (1.1), it is easy to prove another linear inequality for the sum $m_{a}+m_{b}+m_{c}$:

$$
\begin{equation*}
m_{a}+m_{b}+m_{c} \leq 2 s-(6 \sqrt{3}-9) r \tag{3.7}
\end{equation*}
$$

This inequality is also stronger than (3.6) since we have the following inequality:

$$
\begin{equation*}
s \leq 2 R+(3 \sqrt{3}-4) r, \tag{3.8}
\end{equation*}
$$

which is due to W.J.Blundon (see [7], [8], [9]).
Next, we prove an inequality for the acute-angled triangle, which was found by the author many years ago, but has not been proved before.

Theorem B. For acute-angled $\triangle A B C$ holds:

$$
\begin{equation*}
\frac{h_{a}+h_{b}+h_{c}}{m_{a}+m_{b}+m_{c}} \geq \frac{1}{2}+\frac{r}{R}, \tag{3.9}
\end{equation*}
$$

with equality if and only if acute-angled $\triangle A B C$ is equilateral.
Proof. By Theorem 1, to prove (3.9) we need to show that

$$
\begin{equation*}
\left(h_{a}+h_{b}+h_{c}\right)^{2}-\left(\frac{1}{2}+\frac{r}{R}\right)^{2}\left(2+\frac{r^{2}}{R^{2}}\right)\left(a^{2}+b^{2}+c^{2}\right) \geq 0 . \tag{3.10}
\end{equation*}
$$

Multiplying both sides of the above by $4 R^{4}$ and then using the relation $2 R h_{a}=b c$ etc., we see (3.10) is equivalent to

$$
\begin{equation*}
N_{0} \equiv R^{2}(b c+c a+a b)^{2}-(R+2 r)^{2}\left(2 R^{2}+r^{2}\right)\left(a^{2}+b^{2}+c^{2}\right) \geq 0 . \tag{3.11}
\end{equation*}
$$

Substituting (2.6) and (3.4) into the expression of N_{0}, then (3.11) is equivalent to

$$
\begin{align*}
N_{0} \equiv & s^{4} R^{2}-4\left(R^{4}+2 R^{3} r+4 R^{2} r^{2}+2 R r^{3}+2 r^{4}\right) s^{2} \\
& +(4 R+r)\left(4 R^{4}+20 R^{3} r+19 R^{2} r^{2}+8 R r^{3}+8 r^{4}\right) r \geq 0 . \tag{3.12}
\end{align*}
$$

We rewrite N_{0} as follows

$$
\begin{equation*}
N_{0}=4 r^{2}(R+2 r)\left(2 R^{2}+r^{2}\right) e+8 r^{4} G_{2}+R\left[4 r(3 R+r) e+R G_{1}\right] C_{0}, \tag{3.13}
\end{equation*}
$$

where

$$
\begin{gathered}
e=R-2 r \\
G_{1}=s^{2}-16 R r+5 r^{2}
\end{gathered}
$$

$$
\begin{gathered}
G_{2}=4 R^{2}+4 R r+3 r^{2}-s^{2} \\
C_{0}=s^{2}-(2 R+r)^{2}
\end{gathered}
$$

Therefore, by Euler inequality $e \geq 0$, Gerretsen inequalities $G_{1} \geq 0, G_{2} \geq 0$ (see [5], [6]) and the acute triangle inequality $C_{0} \geq 0$ of Ciamberlini (see [10]), we conclude $N_{0} \geq 0$ holds for acute-angled $\triangle A B C$. Hence inequality (3.10) and (3.9) are proved. It is easy to see that the equality in (3.9) holds when $\triangle A B C$ is equilateral. The proof of Theorem B is completed.

4. SEVERAL CONJECTURES

In this section, we will propose some conjectures for the inequalities appeared in this note.

Considering the exponential generalization of Theorem A with help of the computer for verifying, we pose the following three similar conjectures:

Conjecture 1. If $0<k<1$, then for any $\triangle A B C$ we have

$$
\begin{equation*}
\left(m_{a}+m_{b}+m_{c}\right)^{k}-\left(h_{a}+h_{b}+h_{c}\right)^{k} \leq(2 R)^{k}-(4 r)^{k} \tag{4.1}
\end{equation*}
$$

If $\triangle A B C$ is an acute triangle and $k \geq 1.1$, then the inequality holds reversed.
Remark 4.1. It is easy to prove that (4.1) is reversed for all triangles if $k<0$.
Conjecture 2. If $\triangle A B C$ is an acute triangle and $k \geq 1.1$, then we have

$$
\begin{equation*}
m_{a}^{k}+m_{b}^{k}+m_{c}^{k}-\left(h_{a}^{k}+h_{b}^{k}+h_{c}^{k}\right) \geq 2\left(R^{k}-2^{k} r^{k}\right) . \tag{4.2}
\end{equation*}
$$

Conjecture 3. If $k>1$ or $k<0$, then for any $\triangle A B C$ we have

$$
\begin{equation*}
m_{a}^{k}+m_{b}^{k}+m_{c}^{k}-\left(h_{a}^{k}+h_{b}^{k}+h_{c}^{k}\right) \leq(2 R)^{k}-(4 r)^{k} . \tag{4.3}
\end{equation*}
$$

When $k=-1$, (4.3) is actually equivalent to

$$
\begin{equation*}
\frac{1}{m_{a}}+\frac{1}{m_{b}}+\frac{1}{m_{c}} \leq \frac{1}{2 R}+\frac{3}{4 r}, \tag{4.4}
\end{equation*}
$$

which is clear weaker than the known inequality (see [11]):

$$
\begin{equation*}
\frac{1}{w_{a}}+\frac{1}{w_{b}}+\frac{1}{w_{c}} \leq \frac{1}{2 R}+\frac{3}{4 r}, \tag{4.5}
\end{equation*}
$$

where w_{a}, w_{b}, w_{c} are three internal bisectors of $\triangle A B C$. On the other hand, (4.4) can be refined the following:

$$
\begin{equation*}
\frac{1}{m_{a}}+\frac{1}{m_{b}}+\frac{1}{m_{c}} \leq \frac{2}{3}\left(\frac{1}{R}+\frac{1}{r}\right), \tag{4.6}
\end{equation*}
$$

which is proved by the author in [12].
Considering the lower bound of the left hand side of (3.1), we give
Conjecture 4. For any $\triangle A B C$ we have

$$
\begin{equation*}
m_{a}+m_{b}+m_{c}-\left(h_{a}+h_{b}+h_{c}\right) \geq s-3 \sqrt{3} r . \tag{4.7}
\end{equation*}
$$

If (4.7) holds true, then Blundon's inequality (3.8) can be obtain from (3.1) and (4.7).
Next, we give a double inequality conjecture which is inspired by Theorem B:
Conjecture 5. For any $\triangle A B C$ we have

$$
\begin{equation*}
\frac{k_{a}+k_{b}+k_{c}}{m_{a}+m_{b}+m_{c}} \geq \frac{1}{2}+\frac{r}{R} \geq \frac{k_{a}+k_{b}+k_{c}}{r_{a}+r_{b}+r_{c}} \tag{4.8}
\end{equation*}
$$

where k_{a}, k_{b}, k_{c} are symmedians of $\triangle A B C$ and r_{a}, r_{b}, r_{c} are radii of excircles of $\triangle A B C$.
Considering the exponential generalization of inequality (2.3), we present
Conjecture 6. If $k>2$, then for any $\triangle A B C$ we have

$$
\begin{equation*}
\frac{a^{k}}{b^{k}+c^{k}}+\frac{b^{k}}{c^{k}+a^{k}}+\frac{c^{k}}{a^{k}+b^{k}}+2^{k-1} \frac{r^{k}}{R^{k}} \geq 2 . \tag{4.9}
\end{equation*}
$$

If $0<k \leq \frac{8}{5}$, then the inequality is reversed.
The classical Erdös-Mordell inequality can be stated as follows: Let P be an interior point of $\triangle A B C$. Denote by R_{1}, R_{2}, R_{3} the distances of P from the vertices A, B, C, and r_{1}, r_{2}, r_{3} the distances of P from the sidelines $B C, C A, A B$ respectively. Then holds:

$$
\begin{equation*}
R_{1}+R_{2}+R_{3} \geq 2\left(r_{1}+r_{2}+r_{3}\right) . \tag{4.10}
\end{equation*}
$$

It is well known that there are a few stronger versions of the Erdös-Mordell inequality (see e.g. [5], [13]). Here, we put forward two new stronger inequalities.

Conjecture 7. For any interior point of $\triangle A B C$, we have

$$
\begin{equation*}
\frac{R_{1}+R_{2}+R_{3}}{r_{1}+r_{2}+r_{3}} \geq \frac{2 \sqrt{4 s^{2}-16 R r+5 r^{2}}}{m_{a}+m_{b}+m_{c}} \tag{4.11}
\end{equation*}
$$

Inequality (1.1) shows (4.11) is stronger than (4.10).
Conjecture 8. For any interior point of $\triangle A B C$, we have

$$
\begin{equation*}
\frac{R_{1}+R_{2}+R_{3}}{r_{1}+r_{2}+r_{3}} \geq \frac{2\left(h_{a}+h_{b}+h_{c}+2 R\right)}{m_{a}+m_{b}+m_{c}+4 r} \tag{4.12}
\end{equation*}
$$

The following equivalent form of (3.1):

$$
\begin{equation*}
h_{a}+h_{b}+h_{c}+2 R \geq m_{a}+m_{b}+m_{c}+4 r \tag{4.13}
\end{equation*}
$$

means again (4.12) is stronger than the Erdös-Mordell inequality (4.10).

REFERENCES

[1] Chu, X.-G., Yang X.-Z., Some inequalities for the medians of a triangle, Research in Inequalities, Tibet People's Press, 2000.
[2] Liu, J., Chun X.-G., Journal of China Jiaotong University, 20(1), 89, 2003.
[3] Liu, J., Transylvanian Journal of Mathematics and Mechanics, 2(2), 141, 2010.
[4] Yin, H.-Y., 110 conjecture inequalities involving Ceva segments and radii of a triangle, Research in Ineqalities, Tibet People's Press, Lhasa, 2000.
[5] Mitrinović, D.S., Pečarić, J.E., Volenec, V., Recent Advances in Geometric Inequalities, Kluwer Academic Publishers, Dordrecht-Boston-London, 1989.
[6] Bottema, O., Djordjević, R.Z., Janić, R.R., Mitrinović, D.S., Vasić, P.M., Geometric Inequalities, Groningen, 1969.
[7] Blundon, W.J., Can. Math. Bull, 8, 615, 1965.
[8] Dospinescu, G., Lascu, M., Pohoata C., Tetiva, M., J. Inequal. Pure Appl. Math., 9(4), Art. 100, 3 pages, 2008.
[9] Satnoianu, R.A., Math. Inequal. Appl., 7(2), 289, 2004.
[10] Ciamberlini,C., Bull.Un.Mat.Ital., 5(2), 37, 1943.
[11] Chu, X.-G., Liu, J., Missouri Journal of Mathematical Sciences, 21(3), 155, 2009.
[12] Liu, J., Journal of East China Jiaotong Univeresity, 25(1), 105, 2008.
[13] Liu, J., Int. Electron. J. Geom, 4(2), 114, 2011.

[^0]: ${ }^{1}$ East China Jiaotong University, 330013, Nanchang City, Jiangxi Province, China.
 E-mail: china99jian@163.com.

