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Abstract. In this paper, we give two new simpler proofs of a sharp inequality for the
medians of a triangle. We also establish two new inequalities by using this sharp inequality.
Some related conjectures checked by the computer are put forward, which include two
conjectures related to the famous Erdos-Mordell inequality.
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1. INTRODUCTION

In 2000, X.G. Chu and X.Z.Yang [1] established the following geometric inequality:
Let ABC be a triangle with medians m,, m,, m., circumradius R, inradius » and semi-
perimeter s. Then the following inequality holds:

(m, +m, +m,) <4s* —16Rr +5r7, (1.1)

with equality if and only if AABC is equilateral.

This is a strong inequality and has some applications (see e.g. [1], [2]). In my recent
paper [3], I have shown that the combinational coefficients in (1.1) is the best possible. In
fact, by Theorem 2 in [3] it is easy to prove the following conclusion: For all inequalities in
the form

(m, +m, +m,) <ks®+hk,Rr+k;yr?, (1.2)

inequality (1.1) is the best possible, where k;, k>, k; are constants and satisfy 27k; + 2k, + k;
= 81.

On the other hand, it is interesting that there exists the following sharp inequality (1.3)
which is stronger than (1.1):

Theorem 1. In any triangle ABC with sides a, b, ¢, medians m,, my, m., inradius r,
and circumradius R, the following inequality holds:

2
r
<24 (1.3)
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with equality if and only if triangle ABC is equilateral.

Remark 1.1. If A44BC might be a degenerate triangle, then the equality in (1.3) would
also arrive at the case when 4 =0, B=C = % This fact shows inequality (1.3) is sharp.

H.Y.Yin first posed an equivalent form of (1.3) when the inequality (1.1) just had been
set up (see [3], [4]). Until recently, (1.3) has been proved by the author in [3]. However, this
proof is very complicated. The author used a lemma in [1], i.e. the inequality:

4s(s —a)b-c)
2a’ +bc

4m,m, <2a’ +bc— (1.4)

with equality if and only if b = c.

In this paper, we give two simpler proofs of Theorem 1, both of which do not depend
on (1.4). We also give two applications of Theorem 1. One of them is a beautiful linear
inequality involving the medians and the altitudes of a triangle. Another result is about the
acute-angled triangle. In the last section, we will propose some related conjectures.

2. NEW PROOFS OF THEOREM 1

In this section, we will give two proofs of Theorem 1. To simplify matter, we denote
cyclic sums and cyclic products by X, I respectively.
Proof 1: (The method of R — r — s) By Cauchy inequality, we have

2

(Zm, ) <3(b? +c? )z

b2 +c*’

1.€.
2

(Em, )’ szzazzbzma . @.1)

Therefore, to prove inequality (1.3) we need to prove that

mZ 1"2
¢ <1+ ) 2.2
b* +¢? 2R? 2.2)

Using the known formula 4m’ = 2(b2 +C2)—Cl2 , it is easily known that inequality
(2.2) is equivalent to
a’ 2r°

+—2>2. 2.3
b*+c*> R? 2:3)

Since
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2

bzc:—c2 +3
a’+b*+c’ 1
=2 b*+¢* :za22b2+cz
~ ZaZZ(Cz +a2)(a2+b2) _ (Za4+32b202)2a2
- H(b2+c2) N H(b2+cz) ’

hence (2.3) is equivalent to

(Za4 +3Zb202)2a2 2r?
+

-5>0.
H(b2 + cz) R’
Thus, we have to prove that
X, =R (Za' +33b°c*)Ta’ +(2r* =5R*)T1(H* +¢* ) 20. (2.4)
Using the following known identities (see e.g. [S]):
abc = 4Rrs , (2.5)
Ya’>=2s>—8Rrs—2r°, (2.6)
Ybic? =s5* -2(4R—r)s’r+(4R+ 1) r?, (2.7)
Ya*=2s" —4(4R+3r)s’r +2(4R + 1) r?, (2.8)
[1(0> +¢*) =25 =2(12R —r)s*r + 2(40R* + 8Rr —r*)s’r* =2(4R+r)’r*, (2.9)
we obtain
X, =4rX,, (2.10)
where
X, =5°—(8R* +12Rr—1* )s* +(20R* +32R*r + 48R** +8Rr> —r*) s’
\ (2.11)
- (4R + r) r
Obviously, the proof of X, >0 is changed to X, >0. If we put
G, =4R* +4Rr +3r* —s*,
T,=-s*+ 2(2R2 +10Rr —7° )92 - r(4R + r)3 ,
then it is easy to verify the following identity:
X, =G,T, + X,(s?) , (2.12)

where
X, (s?)=2(6R+r)s* +(4R* —128R*r —84R*1> — S6Rr* +4r* )5

+2(2R* +2Rr + 7> 4R+ 1) r.
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By identity (2.12) , Gerretsen inequality G, >0 and the fundamental inequality 7, =0 of

triangles (see [5], [6]), to prove X, >0 it remains to prove that
X,(s?)20 2.13)

Let K =4(6R+r)rs” +(4R* —128R’r —84R*r> —56Rr" +4r*), then it is easy to
show that K may be non-negative and also be negative by giving examples. So we can divide
the proof of X, (52)2 0 into the following two cases, i.e. K >0 and K <0.

Case 1. Assuming K >0.
In this case, according to the property of parabolas and the Gerretsen inequalities:

16Rr —5r° < s> <4R> +4Rr+3r" , (2.14)

X, (sz) is strictly increasing on the interval [1 6Rr —5r* ,4R> +4Rr + 3r2]. So we only need
to prove that X, (1 6Rr — 5r2)2 0, but

X,(16Rr=5r*)=2r (6R+7r)(16Rr—5r) +
(4R* ~128R’r —84R’r* —56Rr +4r*)(16Rr -5 )+
2(2R*+2Rr+1")(4R+7)'r
=4r(80R’ —85R*r + 24Rr” + 21" )(R-2r)’ 2 0.

The latter inequality follows from Euler inequality R >2r. Hence X, (52)2 0 is proved
under the first case.

Case 2. Assuming K < 0. For this case, it is easy to know that X, (sz) is decreasing

on [I6RF—5/% ,4R* +4Rr+3r>]. Thus we only need to show X;(4R* +4Rr+3r>)20.
Simple computations give

X,(4R? +4Rr+3r>)= 4(4R* + 4R F + TR7> +4Rr* +2r* (R—2r) 2 0.

Therefore X, (52 ) >0 is valid under the second case.

Combing with the arguments of the two cases, X, (SZ)Z 0 holds for all triangle ABC.

Therefore, (2.4), (2.3), (2.2) and (1.3) are all proved. From the deductions above, it is clear
that the equality in (1.3) holds only when AABC is equilateral. The proof of Theorem 1 is
complete.

Proof 2: (The method of the Difference Substitution) Firstly, we can turn the proof of
(1.3) into the inequality (2.3) as above. Since

r_Hb+c-a) 2.15)
R 2abc ’ '
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thus inequality (2.3) is equivalent to
a’ N [1(b+c- a)2
b +c? 2 (abc)2

>2, (2.16)
1.€.,

Y,=2 (abc)ZZa2 (cz+a2)(a2 +b2)+

2.17)
+l_[(b2 +02)H(b+c—a)2 -4 (abc)zl_[(b2 +cz)20.

Letb+c—a=2x,c+a-b=2y,a+b—-c=2z,thena=y+z, b=z+x,c=x+y,
and we have

Y, =2 H(y+z)22(y+z)2 [()chy)2 +(y+z)2}[(y+z)2 +(z+x)2}
0| (z42) + () [T10° (2.18)
— 4T1(y+2) 1] (24 ) + (x ) |

Because of symmetry, we assume without loss of generality that x > y > z and let

{y:”m 2.19)

X=z+m+n.

where m > () and n > (). Substituting (2.19) into (2.18), with help of the mathematical software
we obtain the following identity:

Y, =1024 (m* + mn+n’)’ 2 +256 (2m+n)(m’ + mn+n*)(13m>+13mn + 6n°)z" +
+ (18816 m® + 56448 m’n + 79680 m*n* + 65280 m’n’>+31296 m’n"* + 8064 mn’ +
+896 n°)z° +128 2m+n)(118 m® +354 m’n+451 m*n® + 312 m’n’ +121 m*n* +
24 mn’ +2 n®)z> +30112 m® +120448 m'n+ 202496 m°n* +185920 m’n’ +
+101792 m*n®* +3240 m’n’ + 6976 m’n® + 768 mn’ +32 n*)z* + (2.20)
+64 (2m+ n)(m+n)(149 m® + 447 m’n+513 m*n® + 281 m’n’ +79 m*n* +
13 mn’ +n")2’m+16 (468 m® +1404 m’n+1627 m*n®> +914 m’n’ +261 m’n* +
38 mn’ +3 n®Ym+n)’z2’m* +16 (13 m”* +13 mn+n>)2m+n)’ (m+n)’ zm’ +
+10 2m+n)*(m+n)'m* .
So inequality Yy > 0 holds obviously by m >0, n > 0, and z > (. Hence (2.17), (2.16)
and then (1.3) are proved. The equality in Yy > 0 holds if and only if m = n = 0. Further, it is

known that the equalities in (2.17) and (1.3) occurs only when a = b = ¢, i.e. AABC is
equilateral. This completes the proof of Theorem 1.

Remark 2.1. From inequality (2.1), using previous methods to prove Theorem 1 we
can also prove the following inequality:
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(ma +m, erc)4 < 13r°

bc* +c*a* +a’b* 4R*’

2.21)

which is posed by the author in [3].
3. TWO APPLICATIONS OF THEOREM 1

In this section, we will apply Theorem 1 to establish two new triangle inequalities,
which are not both proved by using inequality (1.1).
We first prove the following beautiful linear inequality:
Theorem A. For all AABC holds:
m,+m, +m, —(h, +h, +h )<2(R-2r), (3.1)
with equality if and only if AABC is equilateral.

Proof: By Theorem 1, to prove (3.1) we need to prove that

2

(a2+b2+c2I2+%j£[ha+hb+hc+2(R—2r)]2. (3.2)

Multiplying both sides of this inequality by 4R’ and using the relation 2Rk, = bc etc.,
inequality (3.2) becomes the following equivalent form:

My=[bc+ca+ab+4R (R-2r)] -4 (a® +0° +)(2R? +17)20.  (3.3)
Applying identity (2.6) and the known identity:
bc+ca+ab=s>+4Rr+r*, (3.4)
it is easy to get
M,=(4R* +4Rr+3r’ —s*)".

Thus the claimed inequality M, >0 follows and (3.1) is proved. It is clear that the equality
in (3.1) holds only when AABC is equilateral. This completes the proof of Theorem A.
L

Remark 3.1. By the method to prove Theorem 2 in [3], we can prove that the constant
2 of the right side of (3.1) is the best possible. In addition, from Leuenberger’s inequality (see

[6]):

h,+h,+h, <2R+5r, (3.5)

we see that inequality (3.1) is stronger than the known result (see [6]):
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m,+m, +m, <4R+r. (3.6)

Remark 3.2. By using inequality (1.1), it is easy to prove another linear inequality for
the sum m, +m, +m,:

m,+m, +m, SZS—(6\/§—9)I". (3.7
This inequality is also stronger than (3.6) since we have the following inequality:

s<2R+(3V3-4)r, (3.8)
which is due to W.J.Blundon (see [7], [8], [9]).

Next, we prove an inequality for the acute-angled triangle, which was found by the
author many years ago, but has not been proved before.

Theorem B. For acute-angled AABC holds:
h,+h, +h, >1+r

>—4+— (3.9)
m,+m,+m, 2 R
with equality if and only if acute-angled AABC is equilateral.
Proof. By Theorem 1, to prove (3.9) we need to show that
(h,+h, +h) - l+12 2+i (a>+b7 +c*)=0 (3.10)
a b c 2 R R2 = V. .

Multiplying both sides of the above by 4R* and then using the relation 2Rk, = bc etc.,
we see (3.10) is equivalent to

N,=R’ (bc+ca+ab)2 —(R+2r)2 (2R2 +r2)(a2 +b° +cz)2 0. (3.11)
Substituting (2.6) and (3.4) into the expression of Ny, then (3.11) is equivalent to

N,=s'R*—4 (R4 +2R’r +4R*r* +2Rr’ +2r4)s2
(3.12)
+(4R+r)(4R* +20R*r +19R** +8Rr* +87*)r 20 .

We rewrite Ny as follows
N, =4r" (R+2r)(2R* +7*)e+8r'G, + R[4r(3R+r)e+ RG] C,,  (3.13)
where

e=R-2r
G,=s"—16Rr+5r°
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G, =4R*> +4Rr +3r* -5’
C,=s"—(2R+r) .
Therefore, by Euler inequality e > 0, Gerretsen inequalities G; > 0, G> > 0 (see [5],
[6]) and the acute triangle inequality Cy > 0 of Ciamberlini (see [10]), we conclude Ny > 0
holds for acute-angled AABC. Hence inequality (3.10) and (3.9) are proved. It is easy to see
that the equality in (3.9) holds when AABC is equilateral. The proof of Theorem B is
completed. L

4. SEVERAL CONJECTURES

In this section, we will propose some conjectures for the inequalities appeared in this
note.

Considering the exponential generalization of Theorem A with help of the computer
for veritying, we pose the following three similar conjectures:

Conjecture 1. If 0 <k <1, then for any AABC we have
(m,+m,+m.) —(h,+h,+h) <(2R) —(4r) (4.1)

If AABC is an acute triangle and k > 1.1, then the inequality holds reversed.
Remark 4.1. 1t is easy to prove that (4.1) is reversed for all triangles if £ < 0.

Conjecture 2. If AABC is an acute triangle and k > 1.1, then we have

mb +my +mt =B+ b+ b )2 2(R-254). (4.2)
Conjecture 3. If k > 1 or k < 0, then for any AABC we have

ml+mf+mt —(hE+hf + B ) <(2R) —(4r)". (4.3)
When £ =—1, (4.3) is actually equivalent to

—t—+—<—+— (4.4)

—_—t—+—<—+— (4.5)

where w,, w;, w, are three internal bisectors of AABC. On the other hand, (4.4) can be refined
the following:
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L-FL-FLS%(l-Flj , (4.6)
mC

m, m, 3\R r

a

which is proved by the author in [12].
Considering the lower bound of the left hand side of (3.1), we give

Conjecture 4. For any AABC we have
ma+mb+mc—(ha+hb+hc)28—3\/§r. (4.7)

If (4.7) holds true, then Blundon’s inequality (3.8) can be obtain from (3.1) and (4.7).
Next, we give a double inequality conjecture which is inspired by Theorem B:

Conjecture 5. For any AABC we have

k,+k, +k, Zl+12ka+kb+kc , 4.8)
m,+m,+m, 2 R 1 +r+r

where k, k,,k, are symmedians of AABC and r,,r,,r, are radii of excircles of AABC.

Considering the exponential generalization of inequality (2.3), we present
Conjecture 6. Ifk > 2, then for any AABC we have

k k k k

a b c i ¥
+ + +27 —212. 4.9
b +c* F+at aF+bF R* (+3)

If 0<k S% , then the inequality is reversed.

The classical Erdés-Mordell inequality can be stated as follows: Let P be an interior
point of AABC. Denote by R;, R,, R;the distances of P from the vertices 4, B, C, and r;, r;,
r3 the distances of P from the sidelines BC,CA,AB respectively. Then holds:

R +R, +R, >2(r+r,+r,) . (4.10)

It is well known that there are a few stronger versions of the Erdos-Mordell inequality
(see e.g. [5], [13]). Here, we put forward two new stronger inequalities.

Conjecture 7. For any interior point of AABC, we have

R +R,+R; _ 2V4s* ~16Rr+51°
KAr, . om, +m, +m,

4.11)

Inequality (1.1) shows (4.11) is stronger than (4.10).

Conjecture 8. For any interior point of AABC, we have
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R, +R, +R, >2(ha+hb+hc+2R)

> . (4.12)
ntr m, +m, +m, +4r
The following equivalent form of (3.1):
h,+h,+h, +2R>m, +m, +m_+4r (4.13)

means again (4.12) is stronger than the Erdos-Mordell inequality (4.10).
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