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Abstract. In this paper, we give two new simpler proofs of a sharp inequality for the 

medians of a triangle. We also establish two new inequalities by using this sharp inequality. 
Some related conjectures checked by the computer are put forward, which include two 
conjectures related to the famous Erdös-Mordell inequality. 
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1. INTRODUCTION  
 
 

In 2000, X.G. Chu and X.Z.Yang [1] established the following geometric inequality: 
Let ABC be a triangle with medians ma, mb, mc, circumradius R, inradius r and semi-
perimeter s. Then the following inequali

 

  222 5164 rRrsmmm cba  ,            (1.1) 

 
with  equality if and only if ABC  is equilateral. 

This is a strong inequality and has some applications (see e.g. [1], [2]). In my recent 
paper [3], I have shown that the combinational coefficients in (1.1) is the best possible. In 
fact, by Theorem 2 in [3] it is easy to prove the following conclusion: For all inequalities in 
the form 

 

                        ,                  (1.2)   2
32

2
1

2 rkRrkskmmm cba 
 

inequality (1.1) is the best possible, where k1, k2, k3 are constants and satisfy 27k1 + 2k2 + k3 
= 81.  

On the other hand, it is interesting that there exists the following sharp inequality (1.3) 
which is stronger than (1.1): 
 

Theorem 1. In any triangle ABC with sides a, b, c, medians ma, mb, mc, inradius r, 
and circumradius R, the following inequality holds: 

 

   
 

2

2
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2

2
R

r

cba

mmm cba 



 ,               (1.3) 
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with equality if and only if triangle ABC is equilateral. 
 
Remark 1.1. If ΔABC might be a degenerate triangle, then the equality in (1.3) would 

also arrive at the case when A = 0, B = C = 
2


. This fact shows inequality (1.3) is sharp. 

H.Y.Yin first posed an equivalent form of (1.3) when the inequality (1.1) just had been 
set up (see [3], [4]). Until recently, (1.3) has been proved by the author in [3]. However, this 
proof is very complicated. The author used a lemma in [1], i.e. the inequality: 

 

  
bca

cbass
bcamm cb 




2

2
2

2

4
24 ,            (1.4) 

 
with equality if and only if b = c. 

In this paper, we give two simpler proofs of Theorem 1, both of which do not depend 
on (1.4). We also give two applications of Theorem 1. One of them is a beautiful linear 
inequality involving the medians and the altitudes of a triangle. Another result is about the 
acute-angled triangle. In the last section, we will propose some related conjectures. 

 
 

2. NEW PROOFS OF THEOREM 1 
 
 

In this section, we will give two proofs of Theorem 1. To simplify matter, we denote 
cyclic sums and cyclic products by ,  respectively. 

Proof 1: (The method of R − r − s) By Cauchy inequality, we have 
 

   
22

2
222

cb

m
cbm a

a 
 , 

i.e. 

 
22

2
22 2

cb

m
am a

a 
 .                                                (2.1) 

 
Therefore, to prove inequality (1.3) we need to prove that 

 

            
2

2

22

2

2
1

R

r

cb

ma 


 .                                                   (2.2) 

 
Using the known formula   2222 24 acbma  , it is easily known that inequality 

(2.2) is equivalent to 
 

         2
2

2

2

22

2





R

r

cb

a
.                                                    (2.3) 

 
Since 
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  
 

 
 
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a

b c

a b c
a

b c b c

a c a a b a b c a

b c b c

 

 

    
 

       
 

   

 

hence (2.3) is equivalent to 
 

 
  05

23
2

2

22

2224





R

r

cb

acba
. 

 
Thus, we have to prove that 

 

         2 4 2 2 2 2 2 2 2
1 3 2 5X R a b c a r R b c          0 . (2.4) 

 
Using the following known identities (see e.g. [5]): 
 

  ,  (2.5) Rrsabc 4
  ,   (2.6) 222 282 rRrssa 

    222422 44 2 rrRrsrRscb  , (2.7) 

     22244 4 234 42 rrRrsrRsa  ,  (2.8) 
2 2 6 4 2 2 2 2 3( ) 2 2(12 ) 2(40 8 ) 2(4 )b c s R r s r R Rr r s r R r r          3

2

,   (2.9) 
we obtain 
 

                                           2
1 4X r X , (2.10) 

 
where  

   
 

6 2 2 4 4 3 2 2 3 4
2

3 3

8 12 20 32 48 8

4

X s R Rr r s R R r R r Rr r s

       R r r

        

 

2

  (2.11) 

Obviously,  the proof of   is changed to . If we put 1 0X  2 0X 
 

    , 41022

, 344
32224

0

222
2

rRrsrRrRsT

srRrRG




 

 
then it is easy to verify the following identity: 
 

 2
3022 sXTGX   ,                                                      (2.12) 

where 

               
     

   .4222               

4568412846 2
322

243223442
3

rrRrRrR

srRrrRrRRrsrRsX




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By identity (2.12) , Gerretsen inequality and the fundamental inequality of 

triangles (see [5], [6]), to prove  it remains to prove that 

02 G 00 T

2 0X 
 

               02
3 sX                                                                     (2.13) 

 
Let    , 45684128464 4322342 rRrrRrRRrsrRK   then it is easy to 

show that K may be non-negative and also be negative by giving examples. So we can divide 
the proof of   02

3 sX 0K into the following two cases, i.e.  and 0K . 

 
Case 1. Assuming . 0K
In this case, according to the property of parabolas and the Gerretsen inequalities: 
 

            2 2 2 216 5 4 4 3  ,Rr r s R Rr r                                              (2.14) 
 

 2
3 sX  is strictly increasing on the interval  222 344 , 516 rRrRrRr  . So we only need 

to prove that   0516 2
3  rRrX , but 

    
 
  

  

22 2
3

4 3 2 2 3 4 2

32 2

23 2 2 3

16 5 2  6 16 5

                            4 128 84 56 4 16 5

                            2 2 2 4

                            =4 80 85 24 2 2 0.

X Rr r r R r Rr r

R R r R r Rr r Rr r

R Rr r R r r

r R R r Rr r R r

    

    

  

    

  
 

 
The latter inequality follows from Euler inequality rR 2 .  Hence   02

3 sX  is proved 

under the first case. 
 

Case 2. Assuming . For this case, it is easy to know that 0K  2
3 sX  is decreasing 

on  23r22 44 , 516 RrRrRr  .  Thus we only need to show   03 2
3  rX 44 2  RrR . 

Simple computations give 
 

     02247444344 243223422
3  rRrRrrRrRRrRrRX . 

 
Therefore   02

3 sX  is valid under the second case. 

Combing with the arguments of the two cases,   02
3 sX  holds for all triangle ABC. 

Therefore,  (2.4), (2.3), (2.2) and (1.3) are all proved. From the deductions above, it is clear 
that the equality in (1.3) holds only when ΔABC is equilateral. The proof of Theorem 1 is 
complete. 

 
Proof 2: (The method of the Difference Substitution) Firstly, we can turn the proof of 

(1.3) into the inequality (2.3) as above. Since 
 

                    
 

abc

acb

R

r

2


  ,                                                           (2.15) 
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thus inequality (2.3) is equivalent to 

 
 

22

22 2
2

2

b c aa

b c abc

  
 


 ,     (2.16) 

i.e., 
 

       
    
       

2 2 2 2 2 2
0

2 22 2 2 2

2

4 0

Y  abc a c a a b

     b c b c a  abc b c

    

.        
  (2.17) 

 
Let , , xacb 2 ybac 2 zcba 2 , then zya  , xzb  , yxc  , 
and  we have 

           

   

     

2 2 2 2 2

0

2 2 2

2 2 2

2 

       

        4 .

Y y z y z x y y z y z z x

z x x y x

y z z x x y

              
      

        

2 


  (2.18) 

 
Because of symmetry, we assume without loss of generality that zyx  and let 
 








.  nmzx

mzy
       (2.19) 

 
where m ≥ 0 and n ≥ 0. Substituting (2.19) into (2.18), with help of the mathematical software 
we obtain the following identity: 

       (2.20) 

2 2 2 8 2 2 2 2 7
0

6 5 4 2 3 3 2 4 5

6 6 6 5 4 2 3 3 2 4

1024 ( ) 256 (2 )( )(13 13 6 )

(18816 56448 79680 65280 31296 8064

896 ) 128 (2 )(118 354 451 312 121

Y  m mn n z  m n m mn n m mn n z

        m  m n  m n  m n  m n  mn

        n z  m n  m  m n  m n  m n  m n

         

     

      
5 6 5 8 7 6 2 5 3

4 4 3 5 2 6 7 8 4

6 5 4 2 3 3 2 4

24 2 ) 30112 120448 202496 185920

101792 3240 6976 768 32 )

64 (2 )( )(149 447 513 281 79

13

       +  mn  n z  m  m n  m n  m n

        m n  m n  m n  mn  n z

       +  m n m n  m  m n  m n  m n  m n

       +  



     

     

      
5 6 3 6 5 4 2 3 3 2 4

5 6 2 2 2 2 2 3 3 3

4 4 4

) 16 (468 1404 1627 914 261

38 3 )( ) 16 (13 13 )(2 ) ( )

10 (2 ) ( )

mn n z m   m  m n  m n  m n  m n

       +  mn  n m n z m   m  mn n m n m n zm

       +  m n m n m  .

     

       

 





 
So inequality Y0 ≥ 0 holds obviously by m ≥ 0, n ≥ 0, and z > 0. Hence (2.17), (2.16) 

and then (1.3) are proved. The equality in Y0 ≥ 0 holds if and only if m = n = 0. Further, it is 
known that the equalities in (2.17) and (1.3) occurs only when a = b = c, i.e. ΔABC is 
equilateral. This completes the proof of Theorem 1. 

 
Remark 2.1. From inequality (2.1), using previous methods to prove Theorem 1 we 

can also prove the following inequality: 
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 
2

2

222222

4

4

13
4

R

r

baaccb

mmm cba 



,     (2.21) 

 
which is posed by the author in [3]. 
 
 
3. TWO APPLICATIONS OF THEOREM 1 
 
 

In this section, we will apply Theorem 1 to establish two new triangle inequalities, 
which are not both proved by using inequality (1.1). 

We first prove the following beautiful linear inequality: 
 
Theorem A.  For all ΔABC holds: 
 

                 rRhhhmmm cbacba 2 2   ,    (3.1) 

 
with equality if and only if ΔABC is equilateral. 

 
Proof: By Theorem 1, to prove (3.1) we need to prove that 
 

    2
2

2
222 2 22 rRhhh

R

r
cba cba 








  .  (3.2) 

 
Multiplying both sides of this inequality by 4R2 and using the relation 2Rha = bc etc., 

inequality (3.2) becomes the following equivalent form: 
 

        2 2 2 2 2 2
0 4  2 4 2 0M bc ca ab R R r a b c R r            .      (3.3) 

 
Applying identity (2.6) and the known identity: 

 
    ,     (3.4) 22 4 rRrsabcabc 

 
it is easy  to get  
 

           2 2
0 (4 4 3 )2 2M R Rr r s    .        

 
Thus the claimed inequality  follows and  (3.1) is proved. It is clear that the equality 

in (3.1) holds only when ΔABC is equilateral. This completes the proof of Theorem A.                      
�  

0 0M 

Remark 3.1. By the method to prove Theorem 2 in [3], we can prove that the constant 
2 of the right side of (3.1) is the best possible. In addition, from Leuenberger’s inequality (see 
[6]): 

                   
               rRhhh cba 52  ,      (3.5) 

 
we see that inequality (3.1) is stronger than the known result (see [6]): 
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              rRmmm cba  4 .      (3.6) 

 
Remark 3.2. By using inequality (1.1), it is easy to prove another linear inequality for 

the sum : cba mmm 
 

  rsmmm cba  9362  .     (3.7) 

 
This inequality is also stronger than (3.6) since we have the following inequality: 

 
 rRs  4332  ,       (3.8) 

 
which is due to W.J.Blundon (see [7], [8], [9]). 

Next, we prove an inequality for the acute-angled triangle, which was found by the 
author many years ago, but has not been proved before. 

 
Theorem B. For acute-angled ΔABC holds: 

R

r

mmm

hhh

cba

cba 



2

1
 ,      (3.9) 

 
with equality if and only if acute-angled ΔABC is equilateral. 
 

Proof. By Theorem 1, to prove (3.9) we need to show that 
 

           02
2

1 222
2

22
2 















  cba

R

r

R

r
hhh cba  .   (3.10) 

 
Multiplying both sides of the above by 44R and then using the relation etc., 

we see (3.10) is equivalent to 

bcRha 2

 

         2 22 2 2
0 2 2N R bc ca ab R r R r a b c        2 2 2 0 .  (3.11) 

 
Substituting (2.6) and (3.4) into the expression of N0, then (3.11) is equivalent to 

 

     (3.12) 
 

  

4 2 4 3 2 2 3 4 2
0

4 3 2 2 3 4

4 2 4 2 2

        4 4 20 19 8 8 0 .

N s R R R r R r Rr r s

R r R R r R r Rr r r

     

      

 
We rewrite N0 as follows 
 

       2 2 2 4
0 24 2 2 8 4 3  N r R r R r e r G R r R r e RG C       1 0    ,  (3.13) 

 
where 

rRe 2  
22

1 516 rRrsG   
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222
2 344 srRrRG   

 22
0 2 rRsC   . 

Therefore, by Euler inequality e ≥ 0, Gerretsen inequalities G1 ≥ 0, G2 ≥ 0 (see [5], 
[6]) and the acute triangle inequality C0 ≥ 0 of Ciamberlini (see [10]), we conclude N0 ≥ 0 
holds for acute-angled ΔABC. Hence inequality (3.10) and (3.9) are proved. It is easy to see 
that the equality in (3.9) holds when ΔABC is equilateral. The proof of Theorem B is 
completed.     �     

 
 
4. SEVERAL CONJECTURES 
 
 

In this section, we will propose some conjectures for the inequalities appeared in this 
note.  

Considering the exponential generalization of Theorem A with help of the computer 
for verifying, we pose the following three similar conjectures: 

 
Conjecture 1.  If , then for any ΔABC we have 10  k
 

                    (4.1)    2 4
k k k

a b c a b cm m m h h h R r        k

 
If ΔABC is an acute triangle and k ≥ 1.1, then the inequality holds reversed. 

Remark 4.1. It is easy to prove that (4.1) is reversed for all triangles if k < 0. 
 
Conjecture 2. If ΔABC is an acute triangle and k ≥ 1.1, then we have 
 

                   2 2k k k k k k k k k
a b c a b cm m m h h h R r       .   (4.2) 

 
Conjecture 3. If k > 1 or k < 0, then for any ΔABC we have 
 

                     2 4
kk k k k k k

a b c a b cm m m h h h R r       k
.   (4.3) 

 
When k = −1, (4.3) is actually equivalent to 
 

, 
4

3

2

1111

rRmmm cba

      (4.4) 

 
which is clear weaker than the known inequality (see [11]): 
 

, 
4

3

2

1111

rRwww cba

      (4.5) 

 
where wa, wb, wc are three internal bisectors of ΔABC. On the other hand, (4.4) can be refined 
the following: 
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1 1 1 2 1 1
,

3a b cm m m R r
     
 

     (4.6) 

 
which is proved by the author in [12]. 

Considering the lower bound of the left hand side of (3.1), we give 
 
Conjecture 4. For any ΔABC we have 
 

  . 33 rshhhmmm cbacba      (4.7) 

 
If (4.7) holds true, then Blundon’s inequality (3.8) can be obtain from (3.1) and (4.7).  
Next, we give  a double inequality conjecture which is inspired by Theorem B:  
 
Conjecture 5.  For any ΔABC we have  
 

1

2
a b c a b c

a b c a b c

k k k k k kr

m m m R r r r

   
  

   
 ,     (4.8) 

 
where   are  symmedians of ΔABC and  are radii of excircles of ΔABC.    , ,a b ck k k , ,a b cr r r

Considering the exponential generalization of inequality (2.3), we present 
Conjecture 6.  If k > 2, then for any ΔABC we have 
 

     . 22 1 









k

k
k

kk

k

kk

k

kk

k

R

r

ba

c

ac

b

cb

a
   (4.9) 

 

If  
5

8
0  k  , then the inequality is reversed. 

 
The classical Erdös-Mordell inequality can be stated as follows: Let P be an interior 

point of ΔABC. Denote by R1, R2, R3 the distances of P from the vertices A, B, C, and  r1, r2, 
r3 the distances of P from the sidelines BC,CA,AB respectively. Then holds: 

 
 321321  2 rrrRRR   .    (4.10) 

 
It is well known that there are a few stronger versions of the Erdös-Mordell inequality 

(see e.g. [5], [13]). Here, we put forward  two new stronger inequalities. 
 

Conjecture 7. For any interior point of ΔABC, we have 
 

                
cba mmm

rRrs

rrr

RRR






 22

321

321 51642
    (4.11) 

 
Inequality (1.1) shows (4.11) is stronger than (4.10). 
 
Conjecture 8. For any interior point of ΔABC, we have 
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 

.  
4

2 2

321

321

rmmm

Rhhh

rrr

RRR

cba

cba








    (4.12) 

 
The following equivalent form of (3.1): 

 rmmmRhhh cbacba 42      (4.13) 

 
means again (4.12) is stronger than the Erdös-Mordell inequality (4.10). 
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