ON GENERATING FUNCTIONS OF MODIFIED LAGUERRE POLYNOMIALS

KALI PADA SAMANTA ${ }^{1}$
Manuscript received: 09.05.2012; Accepted paper: 20.05.2012;
Published online: 15.06.2012.

Abstract

In the present paper, we obtain a theorem on bilateral generating functions of $f_{n}^{\beta+n}(x)$, a modification of $f_{n}^{\beta}(x)$ by introducing a novel linear partial differential operator obtained by the suitable interpretations of the index n and the parameter β of the polynomial under consideration.

Keywords: Modified Laguerre Polynomial, Generating Function.
AMS-1991 Subject Classification Code: 33A75.

1. INTRODUCTION

Special functions are the solutions of a wide class of mathematically and physically relevent functional equations. Generating functions play a large role in the study of special functions. The study of special functions, in particular, generating functions by grouptheoretic method was originally introduced by L. Weisner’s [1-3], which is lucidly presented in the monograph „Obtaining Generating Functions" by E.D. McBride [4].

In this article we obtain some novel results on bilateral generating functions of $f_{n}^{\beta+n}(x)$, a modification of $f_{n}^{\beta}(x)$ by group-theoretic method, where $f_{n}^{\beta}(x)$ is defined by

$$
f_{n}^{\beta}(x)=\frac{(\beta)_{n}}{n!}{ }_{1} F_{1}\left[\begin{array}{rr}
-n ; & \tag{1.1}\\
1-\beta-n ; & x \\
1
\end{array}\right] .
$$

The main result of our investigation is given in the form of the following theorem:
Theorem: If

$$
\begin{equation*}
G(x, w)=\sum_{n=0}^{\infty} a_{n} f_{n}^{\beta+n}(x) w^{n} \tag{1.2}
\end{equation*}
$$

then

$$
\begin{equation*}
(1+t z)^{\beta-1} \exp \left\{\frac{t x z}{1+t z}\right\} G\left(\frac{x}{1+t z},(1+t z) t\right)=\sum_{n=0}^{\infty} t^{n} \sigma_{n}(x, z) \tag{1.3}
\end{equation*}
$$

[^0]where
\[

$$
\begin{equation*}
\sigma_{n}(x, z)=\sum_{p=0}^{n} a_{p}\binom{n}{p} f_{n}^{\beta-n+2 p}(x) z^{n-p} \tag{1.4}
\end{equation*}
$$

\]

The importance of the above theorem lies in the fact that when one knows a generating relation of the form (1.2), the corresponding bilateral generating relation can at once be written down from (1.3) by attributing different values to a_{n} in (1.2).

To prove the above theorem, we shall introduce the following linear partial differential operator

$$
R=A_{1} \frac{\partial}{\partial x}+A_{2} \frac{\partial}{\partial y}+A_{3} \frac{\partial}{\partial z}+A_{0}
$$

and the extended form of the group generated by R.

2. DERIVATION OF THE OPERATOR AND THE EXTENDED GROUP

Let us now seek first order linear partial differential operator,

$$
\begin{equation*}
R=A_{1} \frac{\partial}{\partial x}+A_{2} \frac{\partial}{\partial y}+A_{3} \frac{\partial}{\partial z}+A_{0} \tag{2.1}
\end{equation*}
$$

such that

$$
\begin{equation*}
R\left(f_{n}^{\beta+n}(x) y^{n} z^{\beta}\right)=C_{n, \beta} f_{n+1}^{\beta+n-1}(x) y^{n+1} z^{\beta-2} \tag{2.2}
\end{equation*}
$$

where $A_{i}(i=0,1,2,3)$ are functions of x, y, z but independent of n, β and $C_{n, \beta}$ is a function of n, β.

Using (2.2) and the following differential recurrence relation

$$
x D f_{n}^{\beta+n}(x)=(x+\beta+n-1) f_{n}^{\beta+n}(x)-(n+1) f_{n+1}^{\beta+n-1}(x),
$$

we easily get

$$
\begin{align*}
& R=x y z^{-2} \frac{\partial}{\partial x}-y^{2} z^{-2} \frac{\partial}{\partial y}-y z^{-1} \frac{\partial}{\partial z}+(1-x) y z^{-2} \tag{2.3}\\
& R\left(f_{n}^{\beta+n}(x) y^{n} z^{\beta}\right)=-(n+1) f_{n+1}^{\beta+n-1}(x) y^{n+1} z^{\beta-2} \tag{2.4}
\end{align*}
$$

In order to find the extended form of the group generated by R i.e. $e^{w R} f(x, y, z)$, where $f(x, y, z)$ is arbitrary function and w is arbitrary constant real or complex, let $\phi(x, y, z)$ be a function such that

$$
R \phi(x, y, z)=0
$$

On solving, $R \phi(x, y, z)=0$, we get $\phi(x, y, z)=x y z e^{x}$.
Let us transform the operator R to E, where

$$
E=x y z^{-2} \frac{\partial}{\partial x}-y^{2} z^{-2} \frac{\partial}{\partial y}-y z^{-1} \frac{\partial}{\partial z}
$$

and R is given in (2.3), then $E=\phi^{-1}(X, Y, Z) R \phi(X, y, Z)$

$$
\text { i.e. } \quad R=\phi(X, Y, Z) E \phi^{-1}(X, y, Z)
$$

Let X, Y, Z be a set of new variables for which

$$
E X=-1, \quad E Y=0, \quad E Z=0
$$

So that E reduce to $D=-\frac{\partial}{\partial X}$.
Now solving (2.5), we have

$$
X=y^{-1} z^{2}, \quad Y=x y, \quad Z=x z
$$

From which, we get

$$
x=\frac{Z^{2}}{X Y}, \quad y=\frac{X Y^{2}}{Z^{2}}, \quad z=\frac{X Y}{Z} .
$$

Using Taylor's theorem, we obtained

$$
\begin{aligned}
e^{w R} f(x, y, z) & =\phi(x, y, z) e^{w D} f(X, Y, Z) \\
& =\phi(x, y, z) F(X-w, Y, Z) \\
& =\phi(x, y, z) g(x, y, z)
\end{aligned}
$$

assuming that $F(X-w, Y, Z)$ is transformed into $g(x, y, z)$ by inverse substitution.
Therefore we obtain

$$
\begin{equation*}
e^{w R} f(x, y, z)=\left(1-\frac{w y}{z^{2}}\right)^{-1} \exp \left\{\frac{-\frac{w x y}{z^{2}}}{1-\frac{w y}{z^{2}}}\right\} f\left(\frac{x}{\left(1-\frac{w y}{z^{2}}\right)},\left(1-\frac{w y}{z^{2}}\right) y,\left(1-\frac{w y}{z^{2}}\right) z\right) \tag{2.6}
\end{equation*}
$$

3. APPLICATION OF THE OPERATOR

$$
\text { Now, writing } f(x, y, z)=f_{n}^{\beta+n}(x) y^{n} z^{\beta} \text { in (2.6), we get }
$$

$$
\begin{equation*}
e^{w R}\left(f_{n}^{\beta+n}(x) y^{n} z^{\beta}\right)=\left(1-\frac{w y}{z^{2}}\right)^{-1+n+\beta} \exp \left\{\frac{-\frac{w x y}{z^{2}}}{1-\frac{w y}{z^{2}}}\right\} f_{n}^{\beta+n}\left(\frac{x}{1-\frac{w y}{z^{2}}}\right) y^{n} z^{\beta} \tag{3.1}
\end{equation*}
$$

Again, on the other hand we have

$$
\begin{equation*}
e^{w R}\left(f_{n}^{\beta+n}(x) y^{n} z^{\beta}\right)=\sum_{p=0}^{\infty} \frac{(-w y)^{p}}{p!}(n+1)_{p} f_{n+p}^{\beta+n-p} y^{p} z^{\beta-2 p} \tag{3.2}
\end{equation*}
$$

Equating (3.1) and (3.2) and then putting $-\frac{w y}{z^{2}}=t$, we get

$$
\begin{equation*}
(1+t)^{n+\beta-1} \exp \left\{\frac{x t}{1+t}\right\} f_{n}^{\beta+n}\left(\frac{x}{1+t}\right)=\sum_{p=0}^{\infty} \frac{(n+1)_{p}}{p!} f_{n+p}^{\beta+n-p}(x) t^{p} \tag{3.3}
\end{equation*}
$$

We shall now prove the theorem, by using the generating relation (3.3)

4. PROOF OF THE THEOREM

Now the right hand side of (1.3)

$$
\begin{align*}
& =\sum_{n=0}^{\infty} t^{n} \sigma_{n}(x, z) \\
& =\sum_{n=0}^{\infty} t^{n} \sum_{p=0}^{n} a_{p}\binom{n}{p} f_{n}^{\beta-n+2 p}(x) z^{n-p} \tag{1.4}\\
& =\sum_{n=0}^{\infty} \sum_{p=0}^{\infty} t^{n+p} a_{p}\binom{n+p}{p} f_{n+p}^{\beta-n+p}(x) z^{n} \\
& =\sum_{p=0}^{\infty} t^{p} a_{p}\left(\sum_{n=0}^{\infty}\binom{n+p}{p} f_{n+p}^{\beta-n+p}(x)(z t)^{n}\right) \\
& =\sum_{p=0}^{\infty} t^{p} a_{p}(1+t z)^{p+\beta-1} \exp \left\{\frac{t x z}{1+t z}\right\} f_{p}^{\beta+p}\left(\frac{x}{1+t z}\right) \tag{3.3}\\
& =(1+t z)^{\beta-1} \exp \left\{\frac{t x z}{1+t z}\right\} \sum_{p=0}^{\infty} a_{p} f_{p}^{\beta+p}\left(\frac{x}{1+t z}\right)\{(1+t z) t\}^{p} \\
& =(1+t z)^{\beta-1} \exp \left\{\frac{t x z}{1+t z}\right\} G\left(\frac{x}{1+t z},(1+t z) t\right) \tag{1.2}
\end{align*}
$$

This completes the proof.
Now, we would like to point it out that the above theorem can be proved by the direct appliction of the operator R by using the method as discussed in [5].

Consider the generating relation

$$
\begin{equation*}
G(x, w)=\sum_{n=0}^{\infty} a_{n} f_{n}^{\beta+n}(x) w^{n} \tag{4.1}
\end{equation*}
$$

Replacing w by $w y$ and multiplying both sides of (4.1) by z^{β}, we get

$$
\begin{equation*}
z^{\beta} G(x, w y)=\sum_{n=0}^{\infty} a_{n}\left(f_{n}^{\beta+n}(x) y^{n} z^{\beta}\right) w^{n} . \tag{4.2}
\end{equation*}
$$

Operating ($\exp (w y))$ on both sides of (4.2), we get

$$
\begin{equation*}
(\exp (w y))\left(z^{\beta} G(x, w y)\right)=(\exp (w y))\left(\sum_{n=0}^{\infty} a_{n}\left(f_{n}^{\beta+n}(x) y^{n} z^{\beta}\right) w^{n}\right) \tag{4.3}
\end{equation*}
$$

The left hand side of (4.3), with the help of (2.6), becomes

$$
\begin{equation*}
\left(1-\frac{w y}{z^{2}}\right)^{\beta-1} \exp \left\{\frac{-\frac{w x y}{z^{2}}}{1-\frac{w y}{z^{2}}}\right\} z^{\beta} G\left(\frac{x}{\left(1-\frac{w y}{z^{2}}\right)},\left(1-\frac{w y}{z^{2}}\right) w y\right) \tag{4.4}
\end{equation*}
$$

The right hand side of (4.3), with the help of (2.4), becomes

$$
\begin{align*}
& =\sum_{n=0}^{\infty} \sum_{p=0}^{\infty} a_{n} \frac{w^{n+p}}{p!}(-1)^{p}(n+1)_{p} f_{n+p}^{\beta+n-p}(x) y^{n+p} z^{\beta-2 p} \\
& =z^{\beta} \sum_{n=0}^{\infty}(w y)^{n} \sum_{p=0}^{n} a_{n-p} \frac{(-1)^{p}(n+1)_{p}}{p!} f_{n}^{\beta+n-2 p}(x) z^{-2 p} . \tag{4.5}
\end{align*}
$$

Equating (4.4) and (4.5) and then putting $w y=t$ and $-z^{-2}=z$, we get

$$
\left(1-\frac{w y}{z^{2}}\right)^{\beta-1} \exp \left\{\frac{-\frac{w x y}{z^{2}}}{1-\frac{w y}{z^{2}}}\right\} z^{\beta} G\left(\frac{x}{\left(1-\frac{w y}{z^{2}}\right)},\left(1-\frac{w y}{z^{2}}\right) w y,\right)=\sum_{n=0}^{\infty} t^{n} \sigma_{n}(x, z)
$$

where $\sigma_{n}(x, z)=\sum_{p=o}^{n} a_{p}\binom{n}{p} f_{n}^{\beta-n+2 p}(x) z^{n-p}$, which is the theorem.

Acknowledgement: I am greatly indebted to prof. A. K. Chongdar of Bengal Engineering and Science University, Shibpur for introducing me to this subject and for his constant encouragement and guidance.

REFERENCES

[1] Weisner, L., Pacific J. Math., 5, 1033, 1955.
[2] Weisner, L., Canad. Jour. Math., 11, 141, 1959.
[3] Weisner, L., Canad. Jour. Math., 11, 148, 1959.
[4] McBride E. B., Obtaining generating functions, Springer Verlag, NewYork, 1971.
[5] Chongdar, A. K., Chatterjea, S. K., Bull. Cal. Math. Soc., 73, 127, 1981.

[^0]: ${ }^{1}$ Bengal Engineering and Science University, Department of Mathematics, Shibpur, 711103, India.
 E-mail: kalipadasamanta2010@gmail.com.

