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Abstract: In this note we have shown the existence of more general generating 

relation from the existence of a partial quasi-bilinear generating relation by using group 
theoretic method. Some particular cases of interest are also pointed out.  
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1. INTRODUCTION  
  
 

In [1], partial quasi-bilateral (quasi-bilinear) generating function is defined as follows:  
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In the present paper, we have shown the existence of a more general generating 
function involving modified Laguerre polynomials from the existence of a partial quasi-
bilinear generating function involving the polynomial under consideration from the group 
theoretic view point. 

In [2], Sharma and Chongdar obtained the following theorem on bilateral generating 
functions involving the modified Laguerre polynomials as introduced by Singh and Bala [3]: 

 
Theorem 1.   If there exists a linear(unilateral) generating relation of the form  
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where  
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In [4], the following theorem in connection with the extension of the above theorem 

has been obtained by the authors of [2]. 
 
Theorem 2. If there exists an unilateral generating relation of the form 
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 where k is a non-negative integer, then we have  
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The importance of the above theorems lies in the fact that whenever one knows a 

generating relation of the type (2) or (5) the corresponding bilateral or extension of the 
bilateral generating relation is at once be written down from (3) or (6). Thus one can get a 
large number of bilateral or extension of bilateral generating relations from (3) or (6) by 
attributing different suitable values to  in (2) or (5). na

In this article, the above theorem has been further extended from the concept of partial 
quasi-bilinear generating function as defined in [1] by using one parameter group of 
continuous transformations. The main result of the paper is stated in the form of the following 
theorem: 

 
Theorem 3.  If  
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2.  PROOF OF THE THEOREM 3 
 
 
For the modified Laguerre polynomials we consider the following operators [4, 5]:  
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 Now we consider the following formula 
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Replacing w by    wytv,  we get 
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Operating     on both sides of (17), we get 21 wRwR ee
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R.H.S. of (18) is  
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Equating (19) and (20), we get 
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This completes the proof of the theorem. 
 

Corollary 1. Putting  and  in (21), we get 0=k 1== ty
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Hence  
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which is Theorem 2. 
 

Special case 1.   
 

On specialising the parameters as  and 1== ba 1=m , in (22) we get the 
following result: 

 

Result 1.   If  
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Which is found derived in [6]. 
 
Corollary 2. Putting    and  in (21), we get 0=  0,= rk 1== ty
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Which is Theorem 1. 
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Special case 2. 
 

On specialising the parameters as      and  1== ba 1=m ,  in (25) we get the 
following result: 

 

Result 2.   
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Which is found derived in [7]. 
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