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Abstract. We recall some classical methods for obtaining the sum of the alternating 
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1. INTRODUCTION  
 

 
Consider a convergent alternating series. To calculate it sum, we may consider several 

methods. We mention: 
(a) The use of the power series; 
(b) The integration of certain adequate identities; 
(c) The use of the trigonometric series; 
(d) The use of the residues theorem; 
(e) The use of the identities of Catalan type. 
In this paper, after a short remembering of the methods (a)-(d), with some illustra-ting 

examples, we propose to consider deeply the method (e). 
 
 
2. A SHORT REMEMBERING OF THE METHODS (a)-(d) 

 
 
(a) The use of the power series 
 
Of principle, the method consists in to obtain and to use the expansions in Maclaurin 

power series of some indefinite differentiable adequate functions, which admit such 

expansions , where 
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convergence domain, defined by a certain convergence radius, given by the celebrated theo-
rem of Abel and which can be calculated by the theorem of Cauchy-Hadamard. The use of the 
power series consists in to give particular values to the variable x , or, in other cases, in the 
integration on an adequate interval. The expansions in power series offers the advantage of  
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the uniform convergence on any compact interval included in the convergence domain and  
can be differentiated, respectively integrated. We don’t repeat here the well-known, usual 
examples, but we will present two more specific ones. 

Let  
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be. 
Example (a) 1. (according to [14]). The sum of the alternating series  
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Consider the expansion in Maclaurin series 
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(a consequence of the expansion in Newton type series of the binomial function , with 
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),,1(t 2/1  and   ,2xt  ).1,1(x  The series on the right part is uniformly 

convergent on any compact interval included in the interval )1,1( . For   we 
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Now we will perform a integration. In order to do this easily, we will use the identity  
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where we denoted by D the differentiation operator. (The formula is reminiscent of the 
decomposition of rational functions into simple fractions.) So we rewrite the formula (2.3) as 
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By integrating both sides on an arbitrary compact subinterval [  , ] of, e 
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        The function R defined by ]1,0[:f 
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f  is continuous and equal to 0 at .0x On the other hand, by a well-known 

theorem of Abel,  is also continuous at f .1x These remarks allow us to take limits in  (2.6) 
as 0  and ,1  which yields   
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Example (a) 2. The sum of the alternating series 
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A similar integration of (2.2), without a precedent division by x , conducts us to the 
formula  
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 (b) The integration of certain adequate identities  
 
This method also constitutes one of the useful resources to calculate the sum of some 

alternating series. We illustrate this method by integrating (term by term) certain identi-ties 
related to the summation of the geometric progressions.                         

Example (b) 1. (The series of Mercator). 
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Example (b) 2. (The series of Leibniz) 
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(c) The use of the trigonometric series 
 
The method is based on the expansion of a function, under certain conditions, in a 

trigonometric (Fourier) series. 
Consider a function  ),(: f R. Let  
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coefficients are given by the formulas 
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 (with the well-known adequate form, in the case of an even or an odd function). If  f  is of  
piecewise C1 class, the following expansion, given by Dirichlet, holds 
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Example (c) 1. (Finding again the series of Leibniz) Consider the odd function 

 ),(: f R, xxf )( . Its expansion in a trigonometric series is  
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Put here  .2/x  The even terms vanishes and we obtain the equality 
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Example (c) 2. (The sum of the alternate series of the reciprocal of  the squares) 
Consider the even function  ),(: f R, xxf )( . Its expansion is  
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Put here the particular value ;0x  we obtain 
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 (d) The use of the residues theorem 
 
The method is based on the use of the following assertion which belongs to the 

complex analysis: Let  f  be a meromorphic function on C, which has a finite number of poles 
C Zmaaaa ,...,,, 321  \ *. If it exists a real number ),0( a and a function )(zz  with the 
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on the exterior of a sufficiently large disk which doesn’t contain no one of the poles , then 

we have the following  equality 
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 (see [1], [3], [6], [8]). 
 
Example (d) 1. (Finding again the alternate series of  the reciprocal of the squares) 
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Consider the meromorphic function C* = C C , . It follows 

that the function has a triple pole in the origin and we obtain 
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which gives the desired formula. 
 
Example (d) 2. Using a similar way, we can obtain the result 

.
720

71
)1(

4

1
4

1 








n

n

n
 

 
 

3. THE IDENTITY OF EUGÈNE CATALAN.  
 
 
Eugène Charles Catalan (Bruges, May 30, 1814 - Liège, February 14, 1894) was a 

french mathematician, naturalized in Belgium.  
He lived in Paris from 1825 and studied at École Polytechnique, where he met in 1833 

Joseph Liouville, the future great mathematician. Initially destined to a carrier of ingenieur, he 
preferred to be a teacher and worked some time at École des Arts et Métiers of Châlons sur 
Marne (renamed in 1998 Châlons–en- Champagne) and, a little later, at Lycée Charlemagne 
of Paris. He formulated in 1844, for Journal für Reine und angewandte Mathematik (shorter 
Journal de Crelle), in Lettre adréssée à l’éditeur, his celebrated conjecture, namely: the only 
solution of  the equation  

1 p qx y  , 
 

with  is  This conjecture was proved in 2002 by the 
Romanian mathematician Preda Mihăilescu (born in 1955)[see his paper in the same journal, 
“Primary Cyclotomic Units and a Proof of Catalan’s Conjecture”, J. Reine angew. Math., 572, 
167, 2004]. 

,  ,  ,   *x y p q  � 3,  2,  2,  3.x p y q   

Catalan participated at the revolution of 1848 and because of this was visited at his 
home by the French Police. He left France and return in Belgium, where he obtained the Chair 
of mathematical analysis of the Uni-vers-ty of Liège. He worked on number theory, 
differential equations, entire series, the calculation of the multiple integrals and in the 
differential geometry of the surfaces. His name also is related to the identity which we will 
discuss immediately, to certain numbers in combinatorics and to a constant in analysis. 
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Fig.  1. Eugène Charles Catalan. 

 
The identity of Catalan is the following 
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Recall quickly the proof. Denote by  and  the left part, respectively the right part 
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Write the sum  by emphasizing in two ordered sums the positive terms (having the 
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which completes the proof. 
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The identity of Catalan allows us to obtain by an elementary way the sum of the 
alternate series of Mercator, i. e. the result 
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To this aim, we will use the asymptotic expression (of the first order) of the harmonic 
sum , namely nH
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This completes the proof. 
The limit of the sequence also can be obtained by using other methods; see [11]. nnB )(

 
 

4. THE GENERAL METHOD OF THE SUMMATION OF THE ALTERNATING 
SERIES USING THE IDENTITIES  OF  CATALAN TYPE 
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an alternating series, which satisfies the conditions of the Leibniz criterion, i. e. the sequence 
 tends decreasingly to 0 (then it has all the terms strictly positive). nna )(

We will use the notations: 

mS = maaaa  ...321  
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So, by exactly the previous way, we deduce the following: 
(a) With the notations we established, we have the general identity of Catalan type 
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 can be put in a convenient form, for which we can obtain the limit, then the problem of 

the summation of the alternating series (4.1) is solved. This is the general summation method 
of  the alternating series,  based on the identities of Catalan type. 
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We illustrate by examples the method in some particular cases. 
 
Example 1. If  the general term , for which we intend to obtain the sum of the 

alternating series (4.1) is  then the applying of the method consists exactly in all the  

procedure previously presented, which we don’t repeat. 
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Therefore, using the formula (4.2), we have 
 

 nnn
a
n SHSS  )2(ln2
][

2 ,                                               (4.5) 

 
Now we will use the fact that for the sum of this example, we posses, as for the har-
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Remark, en passant, that, in fact, this constant, which for simplicity was denoted by 
A , belongs to the family of the constants of  Stieltjes, defined by the equalities 
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(see [5], pp. 32 , 166-169 and [13]). The constant  is obtained  from (4.7), for  i. e. A ,1r
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Put the asymptotic expressions (3.4’) and (4.6) in (4.4). We obtain                             

''2 n  = ),1()(ln
2

1
))1((ln)2(ln 2 oAnon    

which implies, by (4.5) 

][
2
a
nS = 






  )1()2(ln

2

1 2 oAn – .)1()(ln
2

1
))1((ln)2(ln 2 






  oAnon   

Performing the calculations, we obtain 
][

2
a
nS = ).1()2(ln)2(ln

2

1 2 o   

Therefore 

n
lim ][

2
a
nS  =  )2(ln)2(ln

2

1 2  

and so the sum of the series (4.3) is 







1

1 ln
)1(

n

n

n

n
 =  )2(ln)2(ln

2

1 2 . 

 
Example 3. Let be  

n
an

1
      ).1(   

We will calculate the sum of the alternating series  

.
1

)1(
1

1





n

n

n  
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As well known, if ,1 the series 


1

1

n n is convergent and defines the very important 

function  , of Riemann, namely 

)(  =  


1

1

n n . 

Denote, for all  N*, n

)( n =  n

1
...

3

1

2

1
1  . 

So, applying the formula (4.2), we obtain 
 

][a
2nS = )(2  n  – 2 
















  )2(

1
...

)32(

1

)22(

1

)12(

1

n
= )(2  n  – ).(

2

1
1

 n     (4.8) 

 
But we have the following two sided estimate 

 

1)1)(1(

1
  n

< )()(  n <   1)1(

1

n
 

 
 (see [4], II, 262, the formula (11) and, for a simpler proof, see [12]). 

This implies the equality 
 

 
1

1
)()(lim 1




 


n
n

n , 

 
which gives an asymptotic formula (of first order) for the partial sum ),( n  namely 

 
)( n  = ).1()( o  

 
Using two times this formula in (4.8), we obtain  

 
][

2
a
nS  =  )),1()((

2

1
)1()(

1
oo      

which implies 

n
lim ][

2
a
nS  = ).(

2

1
1

1
 






    

 
So, we have obtained, for    > 1, the searched sum of the alternating series 
 







1

1 1
)1(

n

n

n = ).(
2

1
1

1
 






    

 
Concerning the particular values of  , see [7], 333. 
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Example 4. Let be  

n
an

1
        )10(   . 

 
We will calculate the sum of the alternating series  
 

.
1

)1(
1

1





n

n

n  

 
We have, with similar notations,  
 

)(][
2 a

nS =  ),(2)( ''
2  nnS 

where 

)(nS =  n

1
...

3

1

2

1
1  . 

2 
















 

)2(

1
...

)32(

1

)22(

1

)12(

1
2)(''

nn = 2 )1 .(nS  

 
But the sequence of general term  
 






 




1

1
...

3

1

2

1
1)(

1n

n
xn = )(nS – 









1

1n
 

 
is convergent to a limit )(C (a generalized constant of Euler type; see[5], 32 and [13]). This 
implies the following asymptotic formula 
 

)(nS = 








1

1n
+ )1()( oC  . 

Therefore we obtain 
 

][a
2nS = 









1

)2( 1n
 + C )1()( o – 2 1















)1()(
1

1

oC
n 



1=  )1()()21( oC  

and so  

n
lim ][

2
a
nS  =  ).()21( 1  C

 
This conducts us to the final result 
 





1

1 1
)1(

n

n

n  =    ).()21( 1 C 
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