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Abstract. The phase transitions in solid materials (called solid-solid transformations) 

are connected with the thermo dynamical processes with hysteresis, leading to the dissipative 
models. Obvious, the liquid-solid transitions are governed by the reversible processes 
(without dissipation of internal energy). The analysis of a loop of hysteresis reveals some 
features about elastic-plastic properties, like the hardening. We give some retrospective 
results of these transformations along a temperature scale. 

Keywords: elementary representative volume, integral accumulation, entropy/ entropy 
flux pair, weak formulation of the Perrin principle. 
 
1. INTRODUCTION  
 

In this paper are made some considerations about the phase transitions for a 0.8 %C 
steel, cast ingot steel at 1500 °C in prescribed cooling conditions. There are supped a non 
isothermal process. During this process, the steel changes some typical  interne structures: 
volume - centered cubic, face - centered cubic, again volume- centered cubic, along a large 
interval of temperature. These phenomena are in accordance with the phases followed by the 
steel in a cooling process: liquid -  , austenite, perlite, martensite, so on. The microstructure 
reveals a disposal on dendrites; we have in mind a schema from Fig. 1. 

 

 
Fig. 1. The cooling structure diagram of steel. 

 
The microstructure is dominated by the dendritic structure, as a result between the two 

intimate phenomena which arise during the cooling process: the nucleation and crystal 
growing. The circumstances of the priory evolution of one phenomenon or another are 
analyzed by physicians and other scientists. The mathematical literature have tried to realize 
an agreement between a dendritic structure of the metal and a lattice structure of the processes 
and implicitly of the elementary domains set, which appears in the mixture of an intermediate 
zone. 
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For a local study we extract an elementary representative volume (ver), to whom we 
can attribute some thermo dynamical or geometrical parameters, it is acted by a suite of 
transformation processes, which define the particular constitutive laws underlying phase 
transitions of the ver.  

 

 
Fig. 2. Sketch  of a ver. 

 
The mathematical models of phase transitions are described by the nonlinear problems 

of the heating diffusion (the cooling of the molten metal), by the mass and heat transfer 
problem (solidification), by the elastic-plastic deformation with phase transition into the solid 
materials. 
 
 
2. ENERGETIC ACCUMULATION DURING THE TRANSITION PROCESSES 

 
 
We have in view a metal melting in liquid-δ phase, as a fluid. At the same time it is 

presume as an union of elementary volumes, each of them submitted at the thermal process, 
the thermal change develops by the loss of heat at different hotness. 

Most times liquid- -austenite transitions are described by the free boundary value 
problems of Stefan type in different studies about the thermodynamics of dissipative 
materials. Here the behavior of the interface characteristics sways the phase growing. The 
model equations are compatible with the principles of thermodynamics; see Truesdell, 1984, 
Gurtin, 1983, 1990, Hills, Loper & Gurtin, 1989, Luckhaus & Modica, 1989. 



The mechanism of heat changing correspond to a scale of temperatures (a cooling 
range), it can be explained by the heat accumulation concept (dissipation of heating) 
associated to one process. This concept is equivalent to the measure of the accumulated heat 
(lost heat). 

We intend to introduce an abstract formalism adequate to thermodynamics. Denote by 

U a family of the elementary representative volumes, V

c

 U is a ver and P a family of the 
transition processes which are submitted the systems of U. We take as a subfamily of P the set 

of conservative processes (cyclic processes), denoted P . Our aim is to define a lattice 
structure associated to the material, viewed as molten, so we form a vector bundles (U, P , ), 

where UP :  is a surjective application, the image    V VP   is a fiber of the all 

processes compatible with the ver V, 
   c VPVP cP

 it is also the fiber of the cyclic 
processes. We will introduce an union of the ver- systems and also an union of the processes 
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which are compatible with them: for UUK   define , UK  :

  UKKKK  2121,

 ,H
. 

Denote by  a total ordered set, called the variety of hotness applied to the 

family U, which is isomorphic to  ,R

 
; for each hotness we associate a temperature. Any 

homeomorphism  is a temperature scale, we denote by  the scale family 

of positive temperatures, 

RH , G

  
Homh

 ,0G :/, HR HHom  . 

For a ver-system , which lies in the process P, the absorption or the emission 

phenomenon can be characterized by the distributions , . 

P

  PP


 C P:C G

 
Definition 2.1. The heat accumulation of the ver along the transformation P, from the 

fiber , is the quantity      PCPCPC   . 

We will associate to the union operation   another application , named a projection 

over the processes compatible with the union, 
  PPKP :

,   is injective, here 

 is the family of the united processes associated to united systems (enchained 

systems) . 

 KPP 

K

  IIhHh h :/

 

Definition 2.2. We name the reference hotness threshold , such that II , H

A
 is the characteristic function of the set A, so. , where 

In all what follows, the set of non increasing, right continuous functions will be 

of a great importance, as the example from the figure 2, 

, for which there exist 

 








Ax

Ax
xA ,0

,1


:f     ,0,0 Rbfa f ,
,  such that 

,ff ba 

 








f

f

bxf

ax
xf

,

,0

. Based on the positive and continuous functions we can introduce the 

family of bounded variation functions 
  FFF  . 

 

Definition 2.3. We name an integral accumulation with density , denoted Ff

   

0

1
xdf

x
fAc

, the numerical value given by this Stieltjes-Riemann integral of the ratio 

x

1

 according to f. 
 

Remark 2.4. If the density function f lies in

then

 the distributional space
   ,00C

, 

   



0 2

1
dxxf

x
fAc

. 
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Considering an united process consisting in elementary processes compatible with the 

family U of ver-systems from the intermediate zone of the material, denoted , which 

ulation 

PP

 PCis endowed with a heat accum  (emitted, or absorbed  quantity), 

PC     PCPC   and a temperature scale G , we perform a heat distribution of 

the system  P  along the process P, using a temperature scale   as 

    FPCPC  1,.  
e give  

Definition 2.5. Let RPA : , 

. W
 

    ,.PCAPA  c  , G
, be th heat 

stem , along the process 

e 

accumulation of the  ver-sy  P P, in the scale . 
 

 
3. THE  MOLTEN ETAL (LIQUID

rom the point of view of our research we have investigate the heat change into the 
s, but the change with the 

n s at different hotness.  We 
recall the idea of Serrin (see C. Truesdell, 1984) regarding the accumulation along the 
process, co

 )  ANALYSIS OF THE  M
 
 
F

molten melt, assimilating the fluid with an union of ver-system
exterior medium have been approached by a suite of small cha ge

rresponding to a temperature scale and we will introduce a classical capacity, 
which is the same as a measure of heating change from the material. Suppose that the quantity 

         ttCtq 2
1:        ttp 1

1   
 can be considered as a specific heat of the 

fluid and       TttTI  2/,0,   is called the temporal level imposed by the 
temperature T. 

  satisfying the law Supposing the molten as an ideal fluid
   LRVLVp ,

 , for 

all G , HL ,  RV , we derive the central result. 
 

Theorem 3.1. For any curve C , identified with the co Pimposed process , 

for     iA
 can be RHHom ,  any a te accumulation mperature scale, the integral 

 
expressed by 

  iA

 

1

0 t

q

 2

dt
t

 (see also the classical expression of the entropy 

  T
S

Remark e can define the particular transformations of a ver-

dq

 
 3.2. At this stage w

system: if  

) 

  Tt 2 , for all , then  1,0t C  is an isotherm curve of T level along 

the i  process for the ver-system   Ui  ; if any part   1,0P  satisfies the relation 

  0dtt
en C q

, th   is an adiabatic curve along the i  process for the ver-system 
  Ui  ; if  0  1  , then   correspond clic process.  to a cy

www.josa.ro                                                                                                                                                   Mathematics Section  



Some models of dissipative …                                                                                                     Constantin Ghita 275

Corollary 3.3. Let C  be a curve of the transform uch as 0Pi ation, s   then 
  0 iA

, i.e. clic m any cy cess is realized without heat accu ulation. 
 

 pro

 
Fig. 3. An example of the accumulation function. 

 
In what follows, the accumulation function permits us an irreversible or a reversible 

treatment of the subject. 
 
 

3.1. THE AUSTENITIC TRANSFORM-TRANSITION FROM LIQUID STATE Δ TO SOLID 
(AUST

 
We make some thermodynamic considerations about the transition process of the ver-

ss 
classical problem of Stefan type. Consider that the ver-system occupies a 

bounded measurable domain B in the physical space, denoting by  the sub domain 

ENITE) 

 

system, where the heat diffusion is made by the thermal conduction, a non isotherm proce
governed by a 

1B

occupied by the solid phase and the complementary sub domain by 2B
and 21 BBS 

 is 

the separation interface. For a transition hotness Mh
we associate a reference temperature 

 MM hT 
, called the solidification temperature, later we use a uced temperature 

 MTT
red

     Mhh   . The ver-system has an internal energy during the phase 

on the R3-space. The heat transfer is realized between connected ver-systems if there exists 
e of hotness between the two systems and can be characterized by the q heat 

transition as an absolute continuous m

0

easure (a distribution) according to the Jordan measure 

some differenc

flux vector. Denote by 


 the reduced equilibrium temperature of the two phases and we 

take 
   0102  l

 the difference of energy at the phase transition, named the 
solidification latent heat.  
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Sometimes the tempe

ing  of the interface. The existence of the per thermal zone leads 
us to i

rature can decrease under the value 0 and the transformation 
from the liquid to solid can’t take place, one say that the system lies in the super thermal state, 
which is named a sub cool



 su
ofmpose the presence of the mushy zone, which is a mixture  phases in equilibrium. 

Analytical characterization of the mushy zone needs the introduction of the fraction solid 

function  RB:
, 

   
 








tBx

tBx
xt

1

1

,0

,1
,

, it can be understood as a measure of nucleation 

arise and . We adopt the new expressions for the internal 
energy and heat flux according to the transition process with nucleation,  
 

 

phenomenon near the separation interface. In this way a thin free interface (as a surface of 
null volume) must be replaced by an entire mixture zone, where the germs of the new phase 

 where their growing take place

      21 1,  ,       1,, Kq        21 K , 
 
for one ver-system. We have supposed that the ver is subjected to a transition governed by the 
Fourier law, here K is the thermal conductibility of the material. Thus the states space of the 

ver is         RBDRBC  ,/,  and
0  , q  are scalar function, vector 

function respectively on   BD
Som n free n water, on steel solidification, 

Caginalp & Lin, 1987, G in, 1987, Chadam, Howison & Ortol

,  is the distributional space on B. 
e results of the phase transitions applied o zi g 

including super thermal states have been obtained by Caginalp, 1986, Visintin, 1986, 1987, 
urt  1986, eva, 1987. 

An important parameter characterizing the state of the ver, more used in the treatment 
of the Stefan problem, also counting the super thermal states, is the integral accumulation of 

Clausiu As type, named the global entropy of the ver, denoted , whose density according to 

Iordan measure on Euclidian space 
3R  is the function  xt, , the density of entropy. 

The first law of thermodynamics for a ver –system consists in the equilibrium of total 

 
energy, which is 

        
verFrver

ndxtqdxxt  ,,
  ver

dxxtr ,
, 

where the r function represents the heat supply, will means the external energy. 
The second law of thermodynamics explains the increase of the entropy which 

ccompanies the arise of the new free interface. Here we have the Clausius-Duhem inequality 

 

a
 

    
   

verFrver
d

xt

nxtq
dxxt 




,

,
,

 

 
 dx

xt

xtr
ver ,

,

  
 

We suppose that the  function is continuous on the domain B, but all the other 

functions:  ,,, Kq  have som  discontinuitie ficulty we 
can app
for the ver-system  

e s across the interface. Despite this dif
ly the Gauss-Ostrogradski Theorem and we obtain the local relations of equilibrium 
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(e)       xtrxtdivqxt ,,,  , 
xalmost every where , and the Clausius-Duhem inequality 

 

  BRt ,

(i) 
   

 
 
 xtxt

div
,, 


, a.e. 

xtrxtq
xt

,,
,    Rxt B , . 

 

Assumption 3.4. The ver-system is endowed with an internal energy  , which is 
taken as primitive variable characterizing the physical arameters 

depend

 state, consequently all other p

 upon  . Let
  ~


,   ~ ,     Kq

~
q be, where 

~
, 

~
, K

~  RD , 

and K is a positively defined m
3R . 

We su ose th ot cr e temperature of th  

conside

atrix on 
pp at the h ness in eases, then th   e ver-system

increases too and consequently the internal energy grows strictly monotone.  We have 

red the temperature continuous on B, therefore 
~

 is a invertible function. We 
eliminate the r function between the two relations (e) and (i) and we obtain the inequality  

 

 


 q
2

1
 




gradKgrad ..
1

2


0 , 

and it underlines another nonlinear characteristic of the ver-system 
 

 
 

   



~~

~
1

2
 K

, named the local productivity of entropy accumulated by the ver-
~~

Definition 3.5.  During a transition, the process P whose chara

system in a liquid-solid transition, otherwise the last inequality becomes 
 

cteristics

    1.  
. 

 
~

 and 
~

 

satisfy the relation     1 
~~

, it is a dissipative process and the transition is irreversible

if 

; 

    1
~~  holds, then the process is conservative and the transition is named  

reversible transition

two relations assure

 a
. 

The last 
 ~   0

, that is the entropy of the ver-system is a 
strictly increasing function with respect to internal energy. In order to preserve the estimation 
of the given work means only to assume that dissipation cannot increase the work done. 

 

Assumption 3.6. The density of entropy 


 has a no positive second derivative, 
  0

i.e.
 

, meaning a concave function. 
  For a reversible transition a simple calculus assure 

   
 
 

0
2









 1 













d

d

, then the  function is an invertible function on , such that  
  ~

. I have referred to dissipationless vers capable to follow only reversible processes 
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Definition 3.7. The variation of the 
~

 function according to the temperature, that is 
     ~C

the quantity , which is named the specific heat of the ver-system. 

Obviously, , because 
~

 is a monotone function.    0C

 

 

e take again the idea of the two phases in a ver-system, the heat conduction produce 
an irreversible transition along the manifestation of a process P, also counting the monotony 

 

3.2 ENTROPIC ANALYSIS OF A PHASE TRANSITION 

 
W

of the entropy, that in a   ,  diagram correspond to figure 3, the concavity of the function 





 1
~

,

22 ,
1

~
~ Bin




Bin
 near the critical value 

  of the energy, having the common slope at 1




 

for the function 1
~

, at 2  for the function 2
~

. Using the definition of the specific heat, 

 

the equilibrium equation becomes  
 

   rKvC   di
~

. 

But the liquid
 

 -austenite transition is a reversible one, thus 

        022 
2211

11 ~~ 


 
, considered as a transition value of the temperature, 

which generates a convex hull of the entropy function and at the same time gives the initial 
reduced temperature of the liquid-solid transition. We generalize the notion of latent heat 

adding the new function 

~11~


12  L
 

.  

 
Fig. 4.  Convexification of  entropy. 

 
Later on the free energy of the ver-system will be very useful, presented as a 

discontinuous function, having a jump across the separate interface, revealed in figure 5, 
    0 .We connect this notion with the super therm l states of the ver-system. 

First, we have 
 

a

   10111
~~   ,    20222

~~   , 
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ariations which lead us to the equality 

the two values corresponding to the minimum of the Gibbs potentials, passing to the small 

   2211 ~~  v +L, indeed, 

     212211
~         22110

~~   (using a L egular agrange formula for a r

function) =L+
 L ~

0 =     ~1 0L , where 
 21, 

, because the slope is the same 

on the tangent line,       0~~~
2211    , therefore the r

n at the constant energy 
  appears a 

elation holds. 

The particular case of the phase transitio
discrepancy between the individual phase energies, which assures a super therm l state of the 

ver-system. The domain 

a
      RtxttBx ,,,/ 2

ing of interface and   

x 

zone stated in sub cool

constitute the part of the mushy 
      RtxtxtB ,,,/ 1 x another part of 

the mu reg

 transition into the ver at constan

shy zone stated in the super heating, the two parts are non equilibrium ions of the 
ver-system.  

We affirm that any t energy 
  governs the entropy 

production described by a positive quantity   0 , therefore the material presents the 
super thermal regions under small variations of some other characteristics. 

 
Remark 3.8. Some features about the shape of the free energy can be viewed, doing  a 

simple calculus,            ~~~~
1

~
 (the ver-system is submitted at reversible 

transformation) = 
    ~~

, but the function 
~

 is an increasing function on and for  R

0~  , 
~

 it is also increasing, for 0~  , 
~

 is a decreasing function, a fact that justifies the 

variation given in diagram 
 ,

. 
 

3.3. IN E LUT

 

l equatio  of the form

 

T GRAL AND ENTROPY SO ION FOR A THERMAL CONSERVATION LAW 

 partial differentia n    fudivFut A , in  is called 

a conservation law with unknown u and the flux function 

  ,0nR

 nF,..., . WeF 2FF ,1  can write 

this equation into non divergence form   uubut  , for Fb  . We will focus on the 
initial homogeneous value problem 
 

(CL) t , in   0 udivFu   ,0nR on  0 tRn
,

gu 
,  

where locLg 1  is the initial 

 

value of u. Our aim is to use the variational method in treating 
f this problem. First of all we introduce a notion. 

 

Definition 3.9. We say that lution of  (CL) if there exists 

o

 locLu 1  is an integral so
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0

dxdtuuF
+

 


nR tuv   00.,  nR
dxgv

, for all 
1
cCv

, where 
1
cC

 is the space of 
real valued function with compact support. 

Now we introduce a thermo dynamical notion 

Definition 3.10. Let be a  real valued function and a vector valued function 

 

 , 
 ,  an entropy/ py flux pairrespectively, we call entro  for the conservation law (CL) 

provided    is convex and  satisfies  b . 

We consider an approach problem: for 0  find  satisfying the non 

homogeneous problem 

locLu 1

  
u t .Compute 

 u udivF

            uuuuuu tt         uuub  u    uu  = 

   uu   
    

2
  uuuu  

 (  is a nction, 0convex fu   ) 

   uu 
. Taking account some regularity c esults we onditi nvergent rons and co

obtain 
    0 uu

dt

d

 .  
 
Definition 3.11. We say that u is an entropy s ioolut n of the conservation law provided 

    0 uu
dt

d

, in the distribution sense for each pair  , . 
This definition can be extended on the conservation laws defined by the system 

  0 udivFut , in , where the unknown is 
  ,0nR  m21 uuuu ,...,,  and 

Fn
1



the flux function  

 is given. The initial value problem  

 nmMF ,......... 
FF

F

m
n

m ...

...

1

1
1









 0  udivFut  , 

  ,0nR
, 

gu 
on  0tR n

in , for a given  
and the entropy/ entropy flux pair in the same manner as above. 

Definition 2.5: We say that ists 

+

locLg 1 , has an integral solution

locLu 1  is an integral solution of  (CL) if there ex

  
 
0

:nR t dxdtvuFuv    00., dxgv 1

rea on omp
 

 nR , for all , where  is the space of 
l valued functi  with c act support. 

 call 

cCv 1
cC

Definition 3.12. We
,

 an entropy/entropy flux pair of the conservation law 

provided  is convex, RmR  :  n , 21 ,..., tisfies  B , for 
FB  . 

  sa

t the end of section we gives 



A
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Definition 3.13. We say that u is an entropy solution provided 
    0 uu

dt

d

, in 


the distribution sense for each pair 

,
. 

 
 
4. ANALYSIS OF THE GIBBS POTENTIAL  

 

We take the Gibbs function 

 

 0 
, see figure 6 and the reduced temperature 

0

0 
u


, otherwise u near the transition value We have also 

like in the previous section 

 is a local perturbation 0 .

    0~~
2211   uu

, 221   .1 ~~
ct 

, indeed 
    ~1~

0
, particularly 

    101
~1~   and     2

~
02 1~ 

2 , consequently 

, thus 

   211
~~      2211

~~   , after doing void potential value. As in the 
on where we used the entropic analysis, we can define the super thermal states 

according to Gibbs potential. 
previous secti

 

 
Fig. 5. Variation of free energy of the two phases. 

 
Physically, it exists there a solid dispersed phase into the matrix of liquid phase at the 

level of mushy zone, perhaps the mixture zone occupies  a thin domain, therefore it can be 

considered of null measure. We have seen that the solid fraction function 


 can 
characterize the distribu  this way, th l 

energy 

tion of the solid germs into ver-system. In e interna

 is consistent with the function 


, that is 


 is continuous similar to 


, but the 
internal energy has at most discontinuities of the first kind. For our transformation governed 

by a thermal conduction process we adopt the framework of the two parameters , king 

account for the independent variable

 u  ta


,         21
~1~,~  , 

        21
~1~,~ uuu  ,       uuKuuq  21  , u being continuous on 

B, a.e.  R

K
~ 1

~


. The energy and the entropy of the interface are neglected.  
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Fig. 6. Evolution of potentials Gibbs. 

 
 
The thermodynamics of the ver-system assure relations in a local form:  

 ,   0 ruuqdiv , in  tSB rdivq 
, where S(t) is the free 

interface, 

,    mquv    mqv   on , where v is the displacement speed of the 
interfac

he quantity defined b

C
e, m an outer unit normal of S(t). 

       T y 


veFrver
nddxver 

 Obviously, we have

rver
urdxuq

 is the dissipation 

functional
  0 ver

ressed by the stability 

 of the ver-system. . The non dissipative 

phenomenon of the interface can be exp
  0lim 


n

n
ver

, conditions 

of the functional 
 ver

: when 
  0lim 


n

n
vermes

, or locally  o  mqL .  We don’t detail 
other results abut the dynamic models of the phase transi ls with mass transport of 
Mullins-Sekerka type. Such models were initiated by ekerka, 1963, Sekerka, 
1968, Goldenfeld, 1969. We made an energetic and mass balance from
global growth relations of the area of interfaces and the phase s particular 

model the state of y the parameters 

tion in meta
Mullins&. S

volumes. F

 is characterized b

 which derive the 

ver-system

or thi

 the  cu,  , where u is a 
reduced temperature, c is a concentration of dissolved element in excess from liquid phase. 

Moreover, the state point 
 cu,

 is a steady point for the functionals: f1(t) = Lvol(B2(t)) +a  



 
BB

dxtu
a

tStfdxtu )())(()(;)( 2
2 

 

B

dxtcL ;)(
 


B

dxtctf )()(3

 
 

5. SOLID-SOLID TRANSITION: AUSTENITE-PERLITE 
 

2

 
g process austenite-perlite develops over the interval of temperature 

 

The coolin
 21, 

 and defines an irreversible transformation during a time period. For a temperature 

  greater then 2  the austenite phase is stable, when 1 2  
 appears a perlite  phase 

and for (bainite   )   less then 1  and nearest  for 1 , an instantaneous and reversible 
transition holds. The austenite fraction transformed in martensite grows at the same time as 
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the rapidly decreasing of the temperature from   value to 12 
 value. Models of solid-solid 

nsition were studied by Visintin, 1987, Abeyaratne & Knowles, 1992, Gurtin, 1993, 
rmelli & Gurt e laws. Some processes 

m ixture using as variable the concentration was investigated by 
Ruddock, 1994. 

The austenite-perlite transition as an isotherm process (with liberation of latent heat) is 

 

Let 
   

phase tra
Ce in, 1994, taking account for the nonlinear utiv
for the transfor ations of  the m

governed by the Johnson-Avrami-Mehl law. 

constit

 1,0, 21  tF
be a vector valued function, we define 

       
atbetFt  1, , where b is a rate function of nucleation of the perlite phase, and  

  decrease near 1  the nucleation falls and the a, b   21
0 , , a(0)>0, b(2)=0. When C

element size of the structure grows. In this case we obtain a column structure. When   tend 

to 2  the nucleation became greater and the germ size growing develops slowly. In this way 

growing of the new phase taking as an internal energy 
we obtain an equi axe structure. We characte

ew and the 
   

rize the ver-system transition from the nucleation 
point of vi
    xtFxt ,,

C
 Cxt,

, where  is the latent heat at constant volume, F is the 

austenite fraction transformed and 


 a scale factor, we introduce the energetic equi rium 
equation 

(C()(x, t) + F(x, t))°-K(t, x) = h(t, x), a.p.t. 

lib

    QBTxt  ,0, . 
We have the main result. 

re   
 

 
Theorem 5.1. Let   be, whe

    
  t,x

 0 , f(0
 1ft,xg

)
 

f is a n on [0,1], derivable on (0,1), with , then 
the Cauchy (C() °-K  has an unique weakly solution 
(integrable in Benilan sense ); the dependence from the l data is continuous and 
monotone. More over, if h  bv(0, T, L1 (B)), with 1(B)), then U is Lipschitz 
continuous. 
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CONCLUSIONS 
 
 

We have investigated some models of phase transitions on the range of temperature 
from 60° to 

compatible to the
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