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Abstract:  In this paper we will give two refinements for the Holder’s inequality and 

its reverse using two refinements of the Kittaneh-Manasrah inequality presented by N. 
Minculete. 
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1. INTRODUCTION 
 
In order to prove the results of the following sections, we need to recall the next  

properties.  
 

Theorem  2.1. ([4]) For    and   1, ba  ,1,0  we have  
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Application  3.2. ([4])  For   1,0  ba   and    ,1,0  we have 
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where   )(),(,  BAr   are given in Theorem 2.1. 
 

2. THE RESULTS 
 
Next result  will present a variant of  reverse of the Holder inequality in some 

particular cases,  using as a starting  point  Theorem 2.1.  
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Theorem 1. Let  1,1  p , q  1
11
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. If f and g are two positive functions 

which admit integral on [a,b] for which there exist nd   finite with 
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  Proof:   Taking in Theorem 2.1,  b=1,  
qp

1
1,

1
    we will obtain:  
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By calculus we obtain, 
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and then by integration  the last inequality becomes: 
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Using that  
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Now we consider ),,( F   a measure space and p a real number with   then the 

space  is the collection of all complex-valued Borel measurable functions f 
such that  
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Using the same method we can prove the following result: 
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Consequence 3. Let ,1  p 1 , q  1
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Proof:  The functions f and g being strict positive and  continuous so will be ,  
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Theorem 4. Let  ,1  p ,1  q  1
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Application 3.2 the following inequality: 
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Then by integration from a to b we obtain the desired inequality.    
 

Consequence 5. Let ,1  p  ,1  q  1
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