
Journal of Science and Arts                                                                   Year 12, No. 4(21), pp. 411-420, 2012 

ORIGINAL PAPER

ON A CLASS OF POSITIVE LINEAR OPERATORS 

BRAMHA DUTTA PANDEY1, B. KUNWAR1 

_________________________________________________ 
Manuscript received: 18.09.2012; Accepted paper: 10.10.2012; 

Published online: 01.12.2012. 

 
 
Abstract. A new class of positive linear operators have been introduced which 

contains a number of well known positive linear operators such as Gamma-Operators of 
Muller, Post-Widder and Modi.ed Post-Widder Operators as particular cases.Some basic 
approximation properties of this class of operators have been studied in this paper. 
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1. INTRODUCTION  
 
 

A number of classes and sequences of positive linear operators (henceforth written as 
operator) both, of the summation and those defined by integrals have been introduced and 
studied by a number of authors during the past few decades. Some of well known operators of 
latter type are the Gamma-Operators of Muller [10], Post-Widder Operators [16], Modified 
Post-Widder Operators [9], Gauss-Weierstrass Integrals [13], Convolution type operators 
[14], Baskakov Operators [1], and the operators studied by De Vore [2], Leviaton [8], Kunwar 
[7], Sikkema and Rathore [15]. 

In this paper we will study a class of operators which contains a number of well 
known operators as special cases. This class of operators was introduced in Kunwar [7]. Now 
we will give a brief description of the notations and definitions followed by the definition of 
the operators. 

Throughout the paper IR denotes the interval  0, , ,a b  open interval containing 

 ,a b IR , , ,
c x x    the characteristic function of the interval  ,x x    

  ,IR x x    The spaces       1,  b ,  ,  M IR M I c IR L IRR Lo     respectively 

denote the sets of complex valued measurable, bounded and measurable, locally integrable 
and Lebesgue integrable functions on IR . 

Now we de.ne our operator  [7] and give some elementary properties of the same. nL
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,  0 ,  0,  m IR n IR   . 

Several well known operators are special cases of Ln: 
Choosing  and 1m  2  , the operator reduces to the Gamma-Operators of Muller 

[10] denoted and defined by 
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Choosing , 1m   1   and 1m   , 0   and by proper substitution the operators 

Ln reduces respectively to 
(ii) the Post-Widder operators 1

nS  May [9] defined by, 
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and 
(iii) the operators ,k tL  (Widder [16]) defined by 
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We will make use of a bounding function introduced by Rathore [13] for establishing 

the basic convergence theorem for our operators. 
 
Definition 1. Let  be a continuous function defined on  1   IR . We call  , a 

bounding function if for each compact K IR , there exist positive numbers nk and Mk such 
that 

 ; ,  
kn kL x M x K    

 
For our operators the bounding function is 

 

  ma buu u e u    c , where . , , 0a b c 
 

For this bounding function  , we define 
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2. BASIC APPROXIMATION 
 
 
Lemma 1. If 0 a b      and f D , then 

 

 ,lim ; 0k c
n n xn L f x                                               (2.1) 

 
uniformly in  ,x a b  for any k IR . 

Proof: Since  positive constants A, B and M such that ,  f D   min 1,A a  and 

 max 1,B b  and    f u M u   for all 0, ,
b a

u
B A
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For , there exists  such that  u 1 1,  0n M   

1 1;nL x M  , for all  ,x a b . 

For any 0   we have 
1
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By choosing a positive 1  such that 11 1
b b

b b
 

     
 

 and using the 

property of the function  for sufficiently small 
mm uu e   we have 

1
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    for almost 

all  1 11 ,1u IR      . 

Hence 
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Since  is continuous at 
mm uu e 1u  , there exists a 2 0   s.t. 
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Thus (2.2), (2.3), (2.4) and (2.5) imply that 
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 for any k IR  this proves the lemma.                                    □ 

Next we prove the following basic approximation theorem. 
 
Theorem 1. If f D  and is continuous at a point x IR , then there holds 

 

   lim ;n nL f x f x                                              (2.6)  

 
further if f is continuous on  ,a b , the convergence (2.6) holds uniformly in ,a b . 

Proof: By continuity of  f u  at u x , given 0   arbitrary we can find a 0   

such that 
 

           , ;
2

c
xf u f x Ln f u f x u x

                              (2.7)  

 
where in the case of uniformity   is independent of  ,x a b . In view of (2.7) for all u IR  

there holds 
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          ,2
c

xf u f x f u f x u
      

Using the linearity, poisitivity and the property that  1; 1nL x   of  from the 

inequality (2.8) we have 
nL

           ,; ;
2

c
n nL f x f x L f u f x u x x

      

since       ,
c

xf u f x u D   , using Lemma 1, we can find a n0 such that 

       , ;
2

c
n xL f u f x u x

   

for all  and (0n n  ,x a b , in this uniformity case). 

Hence    ;nL f x f x    for . 0n n

Since 0   is arbitrary, the theorem holds.                                                                   □ 
 

 
3. VORONOVSKAYA THEOREMS 

 
The existence of the third order derivative at the point 1u   and the non zero second 

order derivative at 1u   of the function  ensures that the operators  possesses a 

Voronovskaya-type asymptotic formula. The main result will be followed by the following 
auxiliary results. 

mm uu e
nL

 
Lemma 2. - If 0   is sufficiently small, then the following equalities are true for the 

operators .  ;nL f x
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Proof: Integrating by parts, taking 2u   as the first function 
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for a given 0   we can find a 1 10      such that 
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Applying Theorem 1, we have 
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In view of Theorem 1, it is clear that there exists a  such that 2n
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 Making use of the above estimates and the fact that   is arbitrary, we have (i).         □   
 
Proof: (ii) The proof uses similar analysis and the fact that 
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Therefore we leave the proof.                                                                                         □ 
 

Proof: (iii) Given an arbitrary 0 , there exists a 0 0
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Now, using the arguments given in the proof of part 1, the proof easily follows. This 

completes the proof of the lemma.                                                                                             □ 
The main results of this section are given in 
 
Theorem 2. If f D , and at a certain point x IR , "f  exists, then there holds 
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Further, if "f  exists and is continuous on ,a b , then (3.1) holds uniformly on  ,a b . 

 
Proof: Using L.Hospital’s rule we have 
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Hence, given an arbitrary 0 0 there exists a     such that if u satisfies 
x
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Moreover, it is easily seen that in the uniformity case the above   can be chosen 

independent of  ,x a b . Multiplying the inequality by 2 , ,mn nuu e nD m n m

    and 

integrating between the limits 1 ,1     and making use of Lemma 2, we have 

which holds uniformly in  ,x a b , in the uniformity case. 

Hence 
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In view of the fact that 0   arbitrary, the result follows.                                            □ 
 
Corollary 1. Choosing , 1m  2  , we obtain the Voronovskaya formula for the 

Gamma-Operators of Muller. 
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Corollary 2. Taking  and 1m   1   we have the following Voronovskaya formula 

for the operators . 1
nS
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Corollary 3. With  and 1m   0   we have the Voronovskaya formula for the 

operators Lk,t. 
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4. ERROR ESTIMATES 

 
 
In the previous section, we obtained a precise formula giving the rate of convergence 

of Ln(f; x) to f(x). The assumption on f has been the existence of its second order derivatives. 
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If f is only assumed to be continuous, the following theorem gives an estimate of error 

   ;nL f x f x  in terms of the modulus of continuity of f. 

 
Theorem 3. For the operators Ln(f; x) there holds 
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,  x IR n    where f  denotes the modulus of continuity of f and 
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Proof: Using (4.1), we have 
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For all ,x u IR  by Schwartz.s inequality (4.2) implies 
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making use of the linearity and positivity of the operators , (4.1) follows from (4.2)-(4.5). □  nL

For functions which are continuously differentiable the error estimate (4.1) is rather 
conservative and better estimate is as follows. 

 
Theorem 4. If  'f x  exists and is uniformly continuous on IR  there holds, 

 

   
 

   

   

2 2 3 2

4

1 1
1 22 2
2

1 12 2
2 2

' 3
; 2 3

1 1
1 1

2

n

f

x f x e m m m
L f x f x o

m e e

x x
n o o

m m
n n






1
 

      
 

                                   

             (4.6) 

 

ISSN: 1844 – 9581                                                                                                                                         Mathematics Section 



On a class of positive …                                                                                       Bramha Dutta Pandey, B. Kunwar 

 

www.josa.ro                                                                                                                                                   Mathematics Section  

420 

x IR , n , where  f  denotes the modulus of continuity of f. 

  
Proof: We have, 
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Since by Theorem 2 we have 
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The inequality (4.6) follows by operating (4.7) by  and making use of (4.2), (4.4) 

and (4.8).                                                                                                                                     □ 
nL
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