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Abstract:  In this paper are given some generalizations of Holder’s inequalities for 

isotonic linear functionals using several generalizations of Young’s inequality, Kittaneh-
Manasrah’s inequality and the difference-type reverse inequality. Then, as applications, these 
inequalities will be rewritten for several important particular cases of isotonic linear 
functionals.   
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1. INTRODUCTION  
 

 
It is necessary to recall below an inequality  given in Theorem 2.1 in the paper of N. 

Minculete, see [4]. 
 
Theorem  1. [4] For ,  1a b ≥  and ( )0,1λ∈ , we have 
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In the case when 0 , 1a b< ≤  and ( )0,1λ∈  it is known like an application the 
following result: 
 

Application 2. [4] For 0 , 1a b< ≤  and ( )0,1λ∈ , we have 
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where { }min ,  1r λ λ= −  and ( ) ( ),A Bλ λ  are given before in Theorem 1. 
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The following inequality, given in [3], is a reverse of Young’s inequality, the 
difference-type  reverse inequality. This result will be also used below in the proof of a 
theorem of  this paper. 

 
Corollary 1. [3] For , 0a b >  and ( )0,1λ∈ , the following inequalities hold: 
(i) Ratio-type reverse inequality 

 

( ) ( )( )2
1 1

2
1

1
1 exp

a b
a b a b a b

d
λ λ λ λ λ λ

λ λ− −
 − − ≤ − + ≤  
  

 

where { }1 min ,d a b=  
 

(ii) Difference-type reverse inequality 
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where { }2 max ,d a b=  
 

We recall a reverse scalar Young’s inequality stated in [5] and [6] by F. Kittaneh and 
Y. Manasrah and then we will use it in the next section. 
 

Proposition 1. If , 0a b >  and ( )0,1λ∈ , then 
 

( ) ( )2 1
01a b R a b a bλ λλ λ −+ − ≤ − +  

and 

( )( ) ( ) ( )22 2 1
01a b R a b a bλ λλ λ −+ − ≤ − +  

where { }0 max ,1R λ λ= − . 
The definition of the isotonic linear functionals appears in [1] and [2] and will be  

used also in the next section. 
   

Definition 1. [1] Let  E be a nonempty set and L be a class of real-valued functions 
:f E →  having the following properties: 

(L1) If ,f g L∈  and ,a b∈  the ( )af bg L+ ∈  

(L2) 1 L∈  i.e. if ( ) 1f t =  for all t E∈ , then f L∈  
An isotonic linear functional is a functional :A L →  having the following 

properties: 
(A1) If  ,f g L∈   and ,a b∈  then ( ) ( ) ( )A af bg aA f bA g+ = + .  

(A2) If f L∈  and ( ) 0f t ≥  for all t E∈  then ( ) 0A f ≥ . 
The mapping A is said to be normalized if   

(A3) ( )1 1A = .  
In order to give  some examples for the main results of this paper it is necessary to 

enunciate Theorem 3.2 from [1]. 
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Theorem 2. [1] Let   be a time scale. For ,a b∈  with a b< , let 
 

[ ),E a b= ∩ , [ )( ), ,rdL C a b=   
Then (L1) and (L2) are satisfied. Moreover, let 

 

( ) ( )
b

a
A f f t t= ∆∫  

where the integral is the Cauchy delta time - scale integral. Then (A1) and (A2) are satisfied. 
 
 

2. MAIN RESULTS 
 
 

The following result is a generalization of Holder’s inequality for isotonic linear 
functionals under some additional conditions.  
 

Theorem 3. Let ( )0,1λ∈ , E a nonempty set,  L satisfying conditions (L1),  (L2) and 
A satisfying conditions (A1) and (A2) on the set E. If f and g are two positive functions with 

1 1
2 2, , ,f g f g , ( ) ( )( )21 , log logf g A g f A f g Lλ λ− − ∈  and ( ) ( )f x A f≥  and ( ) ( )g x A g≥ , 

( ) x E∀ ∈  then 
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Proof: Taking into account the inequalities from Theorem 1, where we use ( )1A λ  

instead of ( )A λ  and ( )1B λ  instead of ( )B λ , for 
( )
fa

A f
=  and 

( )
gb

A g
=  we will have: 
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By calculus these inequalities can be written as: 
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Applying now condition (A2) from Definition 1 we obtain, 
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which implies inequalities of the theorem. 
Considering now other additional conditions we can give also the following 

generalization of Holder’s inequality for isotonic linear functionals. 
 

Theorem 4. Let ( )0,1λ∈ , E a nonempty set,  L satisfying conditions (L1), (L2) and A 

satisfying conditions (A1) and (A2) on the set E. If 
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∈  

 
 and ( ) ( )0 f x A f< ≤  and ( ) ( )0 g x A g< ≤ , ( ) x E∀ ∈  then 
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Proof: Using the hypothesis and inequalities from Application 3.2 for 
( )
fa

A f
=   

and 
( )
gb

A g
=  we will obtain when ( )A λ  from Application 3.2 is replaced by ( )1A λ  and 

( )B λ  by ( )1B λ  the following inequalities: 
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By condition (A2) from Definition 1 we get 
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and from here the desired inequalities. 
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A reverse of Holder’s inequality under additional conditions for  isotonic linear 
functionals will be given also below. 

 
Theorem 5. Let ( )0,1λ∈ , E a nonempty set, L satisfying conditions (L1), (L2) and A 

satisfying conditions (A1) and (A2) on the set E. If f and g are two positive functions with 
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Proof: In this case we will use the hypothesis and inequalities from Corollary 1 (ii) for 
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A f
=  and obtaining: 
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and  from condition (A2)  from Definition 1 we obtain, 
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Remark 1. If we consider in Theorem 3, Theorem 4 and Theorem 5 instead of the 

positive functions  f and g  the functions |f| and |g| then the corresponding inequalities remain 
true. 

Example 1.  If =   in Theorem 3.2 from [1]  then [ ]( ), ,L C a b=   and 

( ) ( )
b

a
A f f t dt= ∫ and therefore inequalities from Theorem 3, Theorem 4 and Theorem 5 can 

be rewritten for these functionals under conditions of these theorems. 
 
 Example 2.  If =   in Theorem 3.2 from [1]  then L consists of all real-valued 

functions defined on [ ], 1a b − ∩  and ( ) ( )
1b

t a
A f f t

−

=

= ∑  and therefore inequalities from 

Theorem 3, Theorem 4 and Theorem 5  can be rewritten for these functionals under 
conditions of these theorems.  

In this case, Theorem 3 becomes: 
If f and g are two positive functions, ( )f A f≥  and ( )g A g≥  then 
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Example 3.   Let 0h > . If  h=   in Theorem 3.2 from [1]  then L consists of all 

real-valued functions defined on [ ],  a b h h− ∩   and ( ) ( )
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= ∑  and therefore 

inequalities from Theorem 3, Theorem 4 and Theorem 5  can be rewritten for these 
functionals under conditions of these theorems.  

 
Remark 2. Let ( )0,1λ∈ , E a nonempty set, L satisfying conditions (L1),  (L2) and A 

and B satisfying conditions (A1) and (A2) on the set E. If f and g are two positive functions 
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where { }0 max ,1R λ λ= − . 
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Proof: Taking into account the first inequality from Proposition 1, used  for 
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By Definition 1, the condition (A2), applied successively for A and then for B, we 

have: 
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and summing now these two inequalities we find the desired inequality. 
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