ON MIXED TRILATERAL GENERATING RELATIONS FOR KONHAUSER BIORTHOGONAL POLYNOMIALS

KALI PADA SAMANTA ${ }^{1}$, BIJOY SAMANTA ${ }^{2}$

Manuscript received: 17.08.2014; Accepted paper: 16.09.2014; Published online: 30.09.2014.

Abstract

In this note, we have obtained some novel results on mixed trilateral generating relations involving the polynomials, $Y_{n}^{\alpha-n k}(x ; k)$, a modified form of Konhauser biorthogonal polynomials, $Y_{n}^{\alpha}(x ; k)$ by group theoretic method. As special cases, we have obtained the corresponding results on generalised Laguerre polynomials. Some applications of our results are also discussed.

Keywords: Laguerre polynomials, biorthogonal polynomials, mixed trilateral generating functions.

AMS-2010 Subject Classification Code: 33C 45, 33C 47.

1. INTRODUCTION

The polynomial sets $\left\{Y_{n}^{\alpha}(x ; k)\right\}$ and $\left\{Z_{n}^{\alpha}(x ; k)\right\}$, discussed by J.D.E. Konhauser [12], are biorthogonal with respect to the weight function $x^{\alpha} e^{-x}$ over the interval $(0, \infty)$, $\alpha>-1, k$ is a positive integer. For $k=1$, these polynomials reduce to the generalized Laguerre polynomials, $L_{n}^{\alpha}(x)$. An explicit expression for the polynomials $Y_{n}^{\alpha}(x ; k)$ was given by Carlitz [3] in the following form:

$$
Y_{n}^{\alpha}(x ; k)=\frac{1}{n!} \sum_{i=0}^{n} \frac{x^{i}}{i!} \sum_{j=0}^{i}(-1)^{j}\binom{i}{j}\left(\frac{j+\alpha+1}{k}\right)_{n}
$$

where $(a)_{n}$ is the pochhammer symbol defined by

[^0]\[

(a)_{n}=\frac{\Gamma(a+n)}{\Gamma(a)}=\left\{$$
\begin{array}{lr}
1, & \text { if } n=0, a \neq 0 \\
a(a+1) \ldots(a+n-1,) & \forall n \in\{1,2,3 \ldots\} .
\end{array}
$$\right\}
\]

In a recent paper [7], the present authors have proved the following theorem on bilateral generating relations involving the polynomials, $Y_{n}^{\alpha-n k}(x ; k)$ a modified form of Konhauser biorthogonal polynomials, $Y_{n}{ }^{\alpha}(x ; k)$.

Theorem 1. If there exists a unilateral generating relation of the form

$$
\begin{equation*}
G(x, w)=\sum_{n=0}^{\infty} a_{n} Y_{n}^{\alpha-n k}(x ; k) w^{n} \tag{1.1}
\end{equation*}
$$

then

$$
\begin{equation*}
(1+k t)^{\frac{(1+\alpha-k)}{k}} \exp \left\{x-x(1+k t)^{\frac{1}{k}}\right\} G\left(x(1+k t)^{\frac{1}{k}}, \frac{v t}{1+k t}\right)=\sum_{n=0}^{\infty} \sigma_{n}(v) Y_{n}^{\alpha-n k}(x ; k) t^{n} \tag{1.2}
\end{equation*}
$$

where

$$
\sigma_{n}(v)=\sum_{p=0}^{n} a_{p} k^{n-p}\binom{n}{p} v^{p} .
$$

The object of the present paper is to generalise the above bilateral generating relation into mixed trilateral generating relation by the group-theoretic method. A particular cases of interest is also discussed in this paper. The main results of our investigation are stated in the form of the following theorems:

Theorem 2. If there exists a bilateral generating relation of the form

$$
\begin{equation*}
G(x, u, w)=\sum_{n=0}^{\infty} a_{n} Y_{n}^{\alpha-n k}(x ; k) g_{n}(u) w^{n}, \tag{1.3}
\end{equation*}
$$

where $g_{n}(u)$ is an arbitrary polynomial of degree n, then

$$
\begin{equation*}
(1+k t)^{\frac{(1+\alpha-k)}{k}} \exp \exp \left\{x-x(1+k t)^{\frac{1}{k}}\right\} G\left(x(1+k t)^{\frac{1}{k}}, u, \frac{v t}{1+k t}\right)=\sum_{n=0}^{\infty} \sigma(u, v) Y_{n}^{\alpha-n k}(x ; k) t^{n} \tag{1.4}
\end{equation*}
$$

where

$$
\sigma_{n}(u, v)=\sum_{p=0}^{n} a_{p} k^{n-p}\binom{n}{p} g_{p}(u) v^{p}
$$

Furthermore, we would like to point it out that we have given some applications of our theorem in this paper.

2. PROOF OF THEOREM 2

At first, we consider the following linear partial differential operator [7]:

$$
R=x y \frac{\partial}{\partial x}-k y^{2} \frac{\partial}{\partial y}-(x+k-\alpha-1) y
$$

such that

$$
\begin{equation*}
R\left(Y_{n}^{\alpha-n k}(x ; k) y^{n}\right)=k(n+1) Y_{n+1}^{\alpha-n k-k}(x ; k) y^{n+1} . \tag{2.1}
\end{equation*}
$$

The extended form of the group generated by R is given by

$$
\begin{equation*}
e^{w R} f(x, y)=(1+k w y)^{\frac{1+\alpha-k}{k}} \exp \left\{x-x(1+k w y)^{\frac{1}{k}}\right\} \times f\left(x(1+k w y)^{\frac{1}{k}}, \frac{y}{1+k w y}\right) \tag{2.2}
\end{equation*}
$$

where $f(x, y)$ is an arbitrary function and w is an arbitrary constant.
Let us consider the generating relation of the form:

$$
\begin{equation*}
G(x, u, w)=\sum_{n=0}^{\infty} a_{n} Y_{n}^{\alpha-n k}(x ; k) g(u) w^{n} . \tag{2.3}
\end{equation*}
$$

Replacing w by wvy in the both sides of (2.3) we have

$$
\begin{equation*}
G(x, u, w v y)=\sum_{n=0}^{\infty} a_{n}\left(Y_{n}^{\alpha-n k}(x ; k) g_{n}(u) y^{n}\right)(w v)^{n} . \tag{2.4}
\end{equation*}
$$

Operating $e^{w R}$ on both sides of (2.4), we get

$$
\begin{equation*}
e^{w R}(G(x, u, w v y))=e^{w R}\left(\sum_{n=0}^{\infty} a_{n}\left(Y_{n}^{\alpha-n k}(x ; k) g_{n}(u) y^{n}\right)(w v)^{n}\right) . \tag{2.5}
\end{equation*}
$$

Now the left member of (2.5), with the help of (2.2), reduces to

$$
\begin{equation*}
(1+k w y)^{\frac{1+\alpha-k}{k}} \exp \left\{x-x(1+k w y)^{\frac{1}{k}}\right\} G\left(x(1+k w y)^{\frac{1}{k}}, u, \frac{w v y}{1+k w y}\right) . \tag{2.6}
\end{equation*}
$$

The right member of (2.5), with the help of (2.1), becomes

$$
\begin{equation*}
=\sum_{n=0}^{\infty} \sum_{p=0}^{n} a_{n-p} \frac{w^{p}}{p!} k^{p}(n-p+1)_{p} Y_{n}^{\alpha-n k}(x ; y) g_{n-p}(u) y^{n}(w v)^{n-p} . \tag{2.7}
\end{equation*}
$$

Now equating (2.6) and (2.7) and then substituting $w y=t$ we get

$$
\begin{equation*}
(1+k t)^{\frac{1+\alpha-k}{k}} \exp \left\{x-x(1+k t)^{\frac{1}{k}}\right\} G\left(x(1+k t)^{\frac{1}{k}}, u, \frac{v t}{1+k t}\right)=\sum_{n=0}^{\infty} Y_{n}^{\alpha-n k}(x ; k) \sigma_{n}(u, v) t^{n}, \tag{2.8}
\end{equation*}
$$

where

$$
\sigma_{n}(u, v)=\sum_{p=0}^{n} a_{p} k^{n-p}\binom{n}{p} g_{n}(u) v^{p} .
$$

This completes the proof the theorem.
Special case. Now putting $k=1$ in our Theorem 2 we get the following result on generalised Laguerre polynomials:

Theorem 3. If there exists a bilateral generating relation of the form

$$
\begin{equation*}
G(x, u, w)=\sum_{n=0}^{\infty} a_{n} L_{n}^{(\alpha-n)}(x) g_{n}(u) w^{n} \tag{2.9}
\end{equation*}
$$

where $g_{n}(u)$ is an arbitrary polynomial of degree n, then

$$
\begin{equation*}
(1+t)^{\alpha} \exp (-x t) G\left(x(1+t), u, \frac{v t}{1+t}\right)=\sum_{n=0}^{\infty} \sigma_{n}(u, v) L_{n}^{(\alpha-n)}(x) t^{n} \tag{2.10}
\end{equation*}
$$

where

$$
\sigma_{n}(u, v)=\sum_{p=0}^{n} a_{p}\binom{n}{p} g_{p}(u) v^{p},
$$

which is also found derived in [5, 6].

3. APPLICATIONS

As an application of Theorem 2, we consider the following generating relation [4]:

$$
\begin{equation*}
\sum_{n=0}^{\infty} \frac{n!}{\Gamma(\beta+n l+1)} Y_{n}^{\alpha-n k}(x ; k) Z_{n}^{\beta}(y ; l) t^{n}=(1+t)^{\frac{1+\alpha-k}{k}} \exp \left\{x-x(1+t)^{\frac{1}{k}}\right\} H\left[x(1+t)^{\frac{1}{k}}, \frac{-y^{\prime} t}{1+t}\right] \tag{3.1}
\end{equation*}
$$

where

$$
H[x, t]=\sum_{n=0}^{\infty} \frac{1}{\Gamma(\beta+n l+1)} Y_{n}^{\alpha-n k}(x ; k) t^{n}
$$

If in our theorem, we take $a_{n}=\frac{n!}{\Gamma(\beta+n l+1)}$, and $g_{n}(u)=Z_{n}{ }^{\beta}(u ; l)$ then

$$
G(x, u, w)=(1+w)^{\frac{1+\alpha-k}{k}} \exp \left\{x-x(1+w)^{\frac{1}{k}}\right\} H\left[x(1+w)^{\frac{1}{k}}, \frac{-u^{l} w}{1+w}\right] .
$$

Therefore by the application of our Theorem 2 we get the following generalization of the result (3.1):

$$
\begin{align*}
& (1+k t+v t)^{\frac{1+\alpha-k}{k}} \exp \left\{x-x(1+k t+v t)^{\frac{1}{k}}\right\} X H\left[x(1+k t+v t)^{\frac{1}{k}}, \frac{-u^{\prime} v t}{1+k t+v t}\right] \\
& =\sum_{n=0}^{\infty} \sigma_{n}(u, v) Y_{n}^{\alpha-n k}(x ; k) t^{n}, \tag{3.2}
\end{align*}
$$

where

$$
\sigma_{n}(u, v)=\sum_{p=0}^{n} a_{p} k^{n-p}\binom{n}{p} g_{p}(u) v^{p} .
$$

It is of interest to mention that the result (3.2) for $k=1$ is also obtained by applying Theorem 3, on (3.1) for $k=1$.

4. CONCLUSIONS

From the above discussion, it is clear that whenever one knows a bilateral generating relation of the form $(1.3,2.9)$ then the corresponding mixed trilateral generating relation can at once be written down from (1.4, 2.10). So one can get a large number of mixed trilateral generating relations by attributing different suitable values to a_{n} in (1.3, 2.9).

ACKNOWLEDGMENT

The authors are greatly indebted to Dr. A.K. Chongdar of IIEST, Shibpur for his constant encouragement and guidance.

REFERENCES

[1] Konhauser, J. D. E., J. Math. Anal. Appl., 11, 242, 1965.
[2] Konhauser, J. D. E., Pacific J. Math., 21, 303, 1967.
[3] Carlitz, L., Pacific J. Math., 24, 425, 1968.
[4] Srivastava, H.M., Pacific J. Math., 90(1), 197, 1980.
[5] Alam, S., Chongdar, A.K., Rev. Real Academia de Ciencias Zaragoza, 62, 91, 2007.
[6] Das, S., Chatterjea, S.K., Pure Math. Manuscript, 4, 187, 1985.
[7] Samanta, K.P., Samanta, B., On bilateral generating functions of biorthogonal polynomials suggested by the Laguerre polynomials by group-theoretic method, Communicated (2014).

[^0]: ${ }^{1}$ Indian Institute of Engineering Science and Technology, Department of Mathematics, Shibpur, Howrah 711103, India. E-mail: kalipadasamanta2010@gmail.com.
 ${ }^{2}$ Shibpur D.B. Institution (College), Department of Mathematics, Howrah 11102, India.
 E-mail: bijoysamanta@yahoo.com.

