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Abstract. In this note, we have obtained some novel results on mixed trilateral 

generating relations involving the polynomials, ( );nk
nY x kα− , a modified form of Konhauser 

biorthogonal polynomials, ( );nY x kα  by group theoretic method. As special cases, we have 
obtained the corresponding results on generalised Laguerre polynomials. Some applications 
of our results are also discussed.  
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1. INTRODUCTION  
 
 
 

The polynomial sets ( ){ };nY x kα  and ( ){ };nZ x kα , discussed by J.D.E. Konhauser [1-

2], are biorthogonal with respect to the weight function xx eα −  over the interval ( )0,∞ , 
1α > − , k is a positive integer. For k = 1, these polynomials reduce to the generalized 

Laguerre polynomials, ( )nL xα . An explicit expression for the polynomials ( );nY x kα  was 
given by Carlitz [3] in the following form: 
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where ( )n

a  is the pochhammer symbol defined by 
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In a recent paper [7], the present authors have proved the following theorem on 

bilateral generating relations involving the polynomials, ( );nk
nY x kα−  a modified form of 

Konhauser biorthogonal polynomials, ( );nY x kα .  
 
Theorem 1. If there exists a unilateral generating relation of the form 
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The object of the present paper is to generalise the above bilateral generating relation 

into mixed trilateral generating relation by the group-theoretic method . A particular cases of 
interest is also discussed in this paper. The main results of our investigation are stated in the 
form of the following theorems: 

 
Theorem 2. If there exists a bilateral generating relation of the form 
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where ( )ng u   is an arbitrary polynomial of degree ,n  then 
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Furthermore, we would like to point it out that we have given some applications of our 

theorem in this paper.  
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2. PROOF OF THEOREM 2 
 
 
 
 
At first, we consider the following linear partial differential operator [7]: 
 

( )2 1R xy ky x k y
x y

α∂ ∂
= − − + − −

∂ ∂
 

such that 
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The extended form of the group generated by R  is given by 
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where ( ),f x y  is an arbitrary function and w   is an arbitrary constant. 

Let us consider the generating relation of the form: 
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Replacing w  by wvy  in the both sides of (2.3) we have 
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Operating wRe  on both sides of (2.4), we get 
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Now the left member of (2.5), with the help of (2.2), reduces to 
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The right member of (2.5), with the help of (2.1), becomes 
 

( ) ( ) ( ) ( )
0 0

1 ; .
!

pn
n pp nk n

n p n n pp
n p

wa k n p Y x y g u y wv
p

α
∞

−−
− −

= =

= − +∑∑                 ( )2.7  



On mixed trilateral generating…                                                                   Kali Pada Samanta, Bijoy Samanta 
 

www.josa.ro                                                                                                                                                   Mathematics Section  

240 

 
Now equating (2.6) and (2.7) and then substituting wy t=  we get 
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This completes the proof the theorem. 
 

Special case. Now putting 1k =  in our Theorem 2 we get the following result on generalised 
Laguerre polynomials: 

 
Theorem 3. If there exists a bilateral generating relation of the form 
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where ( )ng u  is an arbitrary polynomial of degree ,n then 

 

( ) ( ) ( ) ( ) ( ) ( )
0

1 exp 1 , , , ,
1

n n
n n

n

vtt xt G x t u u v L x t
t

α ασ
∞

−

=

 + − + = + 
∑             ( )2.10  

 
where 

( ) ( )
0

, ,
n

p
n p p

p

n
u v a g u v

p
σ

=

 
=  

 
∑  

 
which is also found derived in [5, 6]. 

 
 
 

3. APPLICATIONS 
 
 
 
As an application of Theorem 2, we consider the following generating relation [4]: 
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If in our theorem, we take 
( )
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 and  ( ) ( );n ng u Z u lβ=  then 
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Therefore by the application of our Theorem 2 we get the following generalization of 

the result (3.1): 
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It is of interest to mention that the result (3.2) for 1k =   is also obtained by applying 

Theorem 3, on (3.1) for 1k = .  
 

 
 
4. CONCLUSIONS 

 
 
 
From the above discussion,  it is clear that whenever one knows a  bilateral generating 

relation of the form (1.3, 2.9) then the corresponding mixed trilateral generating relation can 
at once be written down from (1.4, 2.10). So one can get a large number of mixed trilateral 
generating relations by attributing different suitable values to na  in (1.3, 2.9). 
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