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Abstract. A study is made of the influence of a coplanar magnetic field on the linear 

stability of a electrically conducting fluid flowing between two infinite parallel fixed plates in 
a porous media using the energy method. The sufficient condition for stability is obtained 
using the nature of growth rate, ic  as well as sufficiently small values of the Reynolds 
number, eR . From this condition we found that the strengthening or weakening of the stability 
criterion is dictated by the strength of the magnetic field and porous parameter. In particular, 
we found that the interaction of magnetic field with porous parameter is more effective in 
stabilizing the electrically conducting fluid in a porous medium compared to that of ordinary 
Newtonian viscous fluid.  
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1. INTRODUCTION  
 
 

The instability of a hydro magnetic shear flow, in which the additional influence of a 
magnetic field is taken into account, has received considerable attention owing, to its 
importance in a number of astrophysical contexts (see for example, Michael 1953, Hunt 
1966). The effect of a magnetic field on the stability of laminar flows of an electrically 
conducting fluid has been found theoretically in a number of cases: it is known to be generally 
of a stabilizing nature, and this has confirmed qualitatively by experiment. In particular, they 
have shown that even in the nonlinear region the diffusive processes are very important 
throughout the fluid region. Using this assumption Stuart (1954), Velikhov (1959) and 
Tarasov (1960) examined the stability of plane poiseuille flow with a parallel magnetic field. 
Drazin (1960) has examined some general aspects of the stabilizing influence of a parallel 
magnetic field on a plane parallel flow, also considering only two-dimensional disturbances. 
Wooler (1961) has examined the stability of a plane parallel flow for small magnetic 
Reynolds number, when the magnetic field lies in the plane of the flow but is not parallel to it. 
He has also shown that three dimensional disturbances can be the most unstable.  

Magnetohydrodynamic shear instability of a field aligned shear flow could be 
responsible for the generation and maintenance of turbulence. The situation is modeled locally 

                                                 
 
1 Bangalore University, Deapartment of Mathematics, 560001 Bangalore, India. E-mail: drp_mb@yahoo.com.  
2 M. S. Ramaiah Institute of Technology, Department of Mathematics, 560054 Bangalore, India.  
E-mail: basavarajms@msrit.edu.  
3  Govt.P.G College, Department of Mathematics, 263645 Uttarkhand, India.  
E-mail: raghavendramisra@yahoo.in  

mailto:drp_mb@yahoo.com�
mailto:basavarajms@msrit.edu�
mailto:raghavendramisra@yahoo.in�


Stability of magnetohydrodynamic…                                                                                 P.M. Balagondar et all 
 

www.josa.ro                                                                                                                                                           Physics Section  

264 

by a linear shear profile, and stability with respect to three dimensional disturbances is studied 
in the presence of both viscous and ohmic dissipation. In this local formulation the boundaries 
are absent, and there is no inflection- point instability. The effect of a uniform coplanar 
magnetic field on the stability of parabolic flow of a conducting fluid between parallel walls 
has been investigated and the stability equations were first given by Micheal (1953) who 
showed that Squire’s theorem is applicable only to two-dimensional magnetohydrodynamic 
flows. 

Because of the complicated form of the stability equations, Stuart (1954) simplified 
the equations by assuming the magnetic Reynolds number mR  as small. The fluid dynamic 
and electrodynamic equations are uncoupled because the induced magnetic field is of second 
order. He claimed the closure of the curve could not be verified because the assumption of 
small mR  and higher values of the Reynolds number eR . In a discussion of Stuart’s paper, 
Cowling (1957) said the existence of a region of stability for large values of eR  “hardly seems 
reasonable”. Rossow (1959) solved the problem again and obtained stability curves for 
constant values of the magnetic interaction parameter N. The curves shift towards higher eR  
with increased N but do not form closed loops. As the stability diagrams were of limited 
value, the stability equation for small mR  has been resolved by a numerical method. 

Hains (1965) investigated the same problem to study the influence of a coplanar 
magnetic field on the stability of a conducting fluid flowing between parallel planes. Four sets 
of stability diagrams were presented so that each stability curve will represent the effect of a 
given applied magnetic field, as only one of the four quantities in the Reynolds number, is 
changed. The flow is always stable for initial disturbances of the field produced by passage of 
a pulsating current through walls of finite conductivity.  

In this era of modernization and globalization considerable interest has been evinced 
in the study of flow through porous media because of its natural occurrence and of its 
importance in industrial, geophysical, biomedical applications. In chemical industries 
involving different types of chemicals which are freely suspended in fluid saturated porous 
media have been used to achieve the effective mixing process (see De Wiest, 1969). In 
petroleum industries, porous medium is used for oil recovery, filtration and cleaning of oil 
spills. In nuclear industries, porous medium is used for effective insulation and for emergency 
cooling of nuclear reactors (Masuoka, 1974). Study of flow through a porous medium is also 
of immense use in geothermal studies (Cheng ,1978., Rudraiah and Srimani, 1980) and in 
biomedical engineering problems to understand the transport processes in lungs, kidneys, 
cartilages in synovial joints and so on. 

In this paper we investigate the stability of two dimensional incompressible 
electrically conducting viscous fluids through a porous channel. The stability equation and the 
stability criteria are obtained using the energy method.  In section 2, we set up the governing 
equations for two-dimentional incompressible electrically conducting fluid through porous 
media with aligned magnetic field B


. In section 3.1 the basic velocity )(yu  and in section 

3.2 linear perturbation equations are obtained. Finally using the linear stability analysis the 
stability equation in the form similar to Orr-Sommerfield equation is derived. And in section 
4, the expression for growth rate ic using energy method is obtained as a function of porous 
parameter pσ , Reynolds number eR , ratio of viscosity β , magnetic interaction parameter N  
and magnetic Reynolds number mR . In section 5, detailed investigation of stability of flow 
under investigation is carried out. Finally the graphs and conclusions are presented in section 
6. 
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NOMENCLATURE: 
 
q   velocity vector ( )v,u  cr phase velocity 
ρ      Density σ  electrical conductivity 
µ      coefficient of viscosity β  ratio of viscosity 
υ    kinematic viscosity u  basic velocity 

pµ   viscosity of porous media pσ  porous parameter 
(x,y)  space co-ordinates  c velocity of  perturbed quantities 
U0 mean velocity B


 magnetic field 

J


 current density  α  horizontal wave number 
P Pressure  t Time 

eR  Reynolds number mR  magnetic Reynolds number 

ic  growth rate N  magnetic interaction parameter 
 

 
2. MATHEMATICAL FORMULATION 
 
 
 We consider a steady flow of an electrically conducting fluid in the presence of a 
coplanar magnetic field between two infinite parallel plates y=h and y=-h.  We take the origin 
O midway between the plates and use rectangular coordinates x and y, with the x-axis in the 
direction of the flow and the y-axis perpendicular to the plates. The plates at y=h and y=-h are 
assumed to be electrically non-conducting. The fluid layer is permeated by a uniform external 
magnetic field and  flow through porous media as shown in fig.1 is considered. 
 

  
                                              Fig. 1. Physical configuration  
 

The magnetohydrodynamic flow equations for viscous incompressible electrically 
conducting fluid through a porous media are the following: 
The continuity equation: 

                                                             q 0∇⋅ =


                             (1)  
Momentum equation:  
 

                      
( ) q

k
BJqpqq

t
q p 
 µ

µρ −×+∇+−∇=



 ∇⋅+
∂
∂ 2                                     (2) 

 
Ohm’s law: 
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                                                 ( )J E q Bσ= + ×
  

                          
(3) 

Faraday’s law  

                                                     t
BE
∂
∂

−=×∇




       
(4) 

Ampere’s law: 

                                                       BJ


×∇=
                  

(5) 
Magnetic continuity: 

                                                           0B =⋅∇


       (6) 
 
where ( )v,uq =

  is the velocity, ρ  is the density, p is the pressure,  µ  is the viscosity co-

efficient, σ   is the electrical conductivity, t is the time and E


 is the electric field. Elimination 
of  E


 from eqn.(3) and eqn.(4) with the aid of eqn.(1), eqn.(5) and eqn.(6) yields 

 

                      
( ) ( ) q

k
BBBqpqq

t
q p22 
 µ

µρ −∇−∇⋅+∇+−∇=



 ∇⋅+
∂
∂

    
(7) 

                                         

( ) ( ) BqBBq
t
B 


21
∇+∇⋅=∇⋅+

∂
∂

σ       
(8) 

 
where the components of the magnetic field and velocity are, respectively 
 

                                                  ĵBîBB yx +=


       (9) 
 

                                                  ĵvîuq +=
  .                (10) 

 
2.1. THE LINEAR STABILITY EQUATIOS 

 
For a two dimensional flow of incompressible homogeneous fluid in the presence of 

coplanar magnetic field through a saturated porous media  equations (7) and (8) written in 
component wise form using (9) and (10). Then by defining the following nondimensional 
variables 

 

               
ou

uu =* ,    
ou

uu =∗ ,    
ou

vv =∗  ,    2
ou

pp
ρ

=∗ ,     
h
yy =∗  ,    

h
xx =∗ ,  

                
( )

ou
h
tt =∗  ,    ( ) ( )

o

yx
yx B

BB
BB ,, =∗∗                      (11) 

 
where ou  is the average velocity and h is the channel half width and substituting them into 
these equations after neglecting the asterisk (*), we get the following equations (12) to (17) in 
nondimensional form  

                                                        

u v 0
x y
∂ ∂

+ =
∂ ∂                                                                     

(12) 
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u

Ry
BB

x
BB

R
NB

R
Nu

x
p

y
uv

x
uu

t
u

e

px
y

x
x

mm

2
22

Re
1 σβ

−







∂
∂

+
∂
∂

+∇−∇+
∂
∂

−=
∂
∂

+
∂
∂

+
∂
∂

             
(13) 

                                  

v
Ry

B
B

x
B

B
R
NB

R
Nu

Re
1

y
p

y
vv

x
vu

t
v

e

2
py

y
y

x
m

2

m

2 σβ
−








∂
∂

+
∂
∂

+∇−∇+
∂
∂

−=
∂
∂

+
∂
∂

+
∂
∂

            
(14) 

 

                                                     
0

y
B

x
B yx =

∂
∂

+
∂
∂

                                                            
(15)

 
 

                      
x

2

m
yx

xxx B
R
1

y
uB

x
uB

y
B

v
x

B
u

t
B

∇+







∂
∂

+
∂
∂

=
∂
∂

+
∂
∂

+
∂
∂

             
(16)

 
 

                      
y

2

m
yx

yyy B
R
1

y
vB

x
vB

y
B

v
x

B
u

t
B

∇+







∂
∂

+
∂
∂

=
∂
∂

+
∂
∂

+
∂
∂

                                    
(17)  

 

where  
ν

huRe o= is the Reynolds number; huR om σ=  is the magnetic Reynolds number; 

k
h

p =σ  is the porous parameter; 
µ
µ

β p=  is the ratio of viscosity and 
0

2
0

u
hBN

ρ
σ

=  is the is 

the magnetic field interaction parameter. 
 
2.2. BASIC FLOW 

 
We consider a basic flow of  two dimensional incompressible electrically conducting 

viscous fluid through a porous channel and assuming it to be fully developed and 

unidirectional parallel to the plates driven by a constant pressure gradient 
x

pb

∂
∂ .The basic 

flow, )(yu , parallel to the boundaries in the x-direction, satisfies the momentum equation 

             

                          
u

Rdy
ud

Rx
p

e

p

e

b
2

2

210
σβ

−+
∂
∂

−=                                      (18) 

               

                             y
p0 b

∂
∂

=                              (19) 

 

where the suffix b represents the basic state quantity and  
x

pP b

∂
∂

=  is  constant  pressure 

gradient. The no-slip boundary conditions  
 
                                               0=u   at 1y ±=                 (20) 
 
where the parameters Re , mR  pσ  and  β  are defined below of equation (17) 
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Solving equation (18) and using the boundary conditions (20), we get 
             

                       

( ) ( )

p

eyy PRececu pp

σβ
σβσβ −+= −

21                               (21) 

 

where  
p

p2

p
e

21
e1

ePR
cc

σβ
σβ

σβ







 +

==  

 
2.3. DERIVATION OF STABILITY EQUATION 

 
Equations (12) to (17) are linearized by assuming small perturbations in the dependant 

variables of the form  

                                     
),,(')( tyx

y
yuu

∂
∂

+=
φε  

 

                                     
),,(' tyx

x
v

∂
∂

−=
φε  

 

                                     )t,y,x('p)y,x(pp b ε+=                 (22) 
 

                                     
x

'B 1 ( x, y,t )
y
ψε ∂= +
∂  

 

                                      
),,(' tyx

x
By ∂

∂
−=

ψε  
 
where ε  is a small quantity. These relations automatically satisfie the continuity equations 
(12) and (15). Substituting equation (22) into equations (12) to (17), equating the coefficients 
at  ( )εO , we obtain 

 

              
( ) y

e

p
yyyyxx

e
xy

m
xxyty RRR

N
x
pyuyu '''1'')(')('

2'
' φ

σβ
φφψφφφ −++−

∂
∂

−=−+              (23)
 

 

            
( ) ( ) x

e

p
yyxxxx

e
yyxx

m
xxtx RRR

N
y
pyu '''1'2'')('

2'

φ
σβ

φφψψφφ +++++
∂
∂

=+                      (24)
 

 

                                 
( )yyxxxx

m
xxxxtx R

yu ''1'')(' ψψψψψ ++=+                                    (25)
 

 

                             
( ) .''1')('')(' '

yyyxxy
m

xxyxyty R
yuyu ψψψφψψ ++−=+              (26) 
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Assuming solutions of equations in the separable form 
 
                                                 

)()(),,(' ctxieytyx −= αφφ   
 
                                                  

)()(),,(' ctxieytyx −= αψψ                                                 (27) 
 
where ir cicc += is the velocity of  the disturbance,  rc  is called the phase velocity and ic is 
called the growth rate and  α  is the horizontal wave number. When    0>ic , the system is 
unstable and 0<ic , the system is stable. Substituting equation (27) into equations (23)-(26), 
and eliminating the pressure term , we get the following stability equations 

 

  

( )( ) ( ) ( ) ( )
( )( )[ ]φψα

φα
α
σβ

φα
α

φφα

−−

=−−−+−−−

cuNi

D
R

i
D

R
iuDDcu

e

p

e

22
2

222222

                                (28) 

 

                        
( ) ( ) .22 ψφψα

α
cuD

R
i

m

−−=−                 (29) 

 
The  boundary conditions of the above problem now reduce to the following 

 

                                   0,0 === ψφφ D  at  .1±=y                 (30)  
 

From  equations (28) and (29), we obtain the following stability equation 

 

     

( )( ) ( ) ( ) ( )

( ) 022

22
2

222222

=−

−−−−+−−−

ψα

φα
α
σβ

φα
α

φφα

D
R
N

D
R

i
D

R
iuDDcu

m

e

p

e              (31) 

 
2.4. STABILITY ANALYSIS 

 
Following Drazin and Ried (2004) we find the conditions for stability or instability of 

the basic flow using the energy method. For this multiply equation (31) by φ  the complex 
conjugate of φ and integrating the resulting equation with respect to y from -1 to +1 using the 
boundary conditions (30), we get the following equation 

 

( ) ( )
( )2

0
22

1

2
1

22
0

22
12

2
p

2
0

42
1

22
2

IIReci

QReiIMII
a

II2I

αα

αασβαα

++

−=++
Λ

+++

                      
(32)   
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where    )2to0n(dyDI
21

1

n2
n =∫=

−
φ                 (33) 

 

( )[ ] ( )( ) ( )

ir

m

QiQ

dyD
R
NdyDuDdyuuDDuQ

+=

−−+++= ∫∫ ∫
−− −

1

1

22
1

1

1

1

2222 φψαφφφαφ
                (34)                              

 

( )[ ] ( )( )dyD
R
NdyuDDuQQ iirr

m
r ∫∫

−−

+−−++==
1

1

22
1

1

2222)Re( ψφψφαφαφ                     (35) 

 

     
( ) ( )( ) .)Im(

1

1

1

1

22∫ ∫
− −

+−−−== dyD
R
NdyuDDDQQ irri

m
riiri ψφψφαφφφφ             (36) 

 
The second term on the left-hand side of equation (32) is the contribution of the 

porous media and the term involving N  and mR  on the right hand side of equation (32) are 
due to the presence of magnetic field. 
 Equating real and imaginary parts of equation (32) to zero respectively, we get 
 

                                      ( )2
0

22
1

r
r II

Qc
α+

=                     (37) 

 

            ( ) ( ) ( ){ }







++++−

+
= 2

0
22

p
42

1
2
p

22
2

e
i2

0
22

1
i II2I

R
1Q

II
1c ασβασβα

αα
            (38) 

 
Equation (38) is simply called the energy equation for two dimensional disturbances 

propagating in the direction of the basic flow. We write Eq. (36) in the form 
 

                
( ) ( )( )∫ ∫

− −

+−−−=
1

1

1

1

22 .
2

)Im( dyD
R
NdyuDDDiQ irri

m

ψφψφαφφφφ
         

         (39) 

 
From eq. (39) it follows that 

 

( )( )∫ ∫
− −

+−−≤
1

1

1

1

22)Im( dyD
R
NdyuDDQ irri

m

ψφψφαφφ  

 
and using Schwarz’s inequality, we get 
 

101 BqII)QIm( −≤  
 

where bDu
1y1

max
q

<<−
=  and 
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( ) ( ) .
1

1

22
1 dyD

R
NB irri

m
∫
−

+−≤ ψφψφα  

 
This gives the upper bound for ic  of the form 

 

               

( ) ( ) ( ){ }
( )2

0
22

1

2
0

2242
1

222
2101 21

II

III
R

BqII
c

pp
e

i α

ασβασβα
α

+

++++−−
≤       .                 (40) 

 
From  Eq.(40)  it follows, that a sufficient condition for stability is 

   

             ( ) ( ) ( )[ ] .21 2
0

2242
1

222
2

101

III
BqII

R ppe ασβασβα
α

++++
−

<                                (41) 

 
 
3. RESULTS AND DISCUSSION 

 
 
The sufficient condition for stability ( ic <0) is obtained from equation (38) in terms of 

the Reynolds number eR  and various other parameters involved in the problem which is 
given by equation (41). The growth rate given by equation (38) is computed numerically 
using single term Galerkin expansion and the results are depicted graphically.  

Fig. 2 show the influence of  pσ  on the basic velocity bU , this figure indicate that 
velocity profiles are symmetric about 0=y  with maximum value along the centerline and 
minimum at the wall. However, for increasing values of  pσ , the fluid velocity decreases and 
flattens out. From this figure it is clear that as porous parameter, pσ  increases from 1, 4, 8 to 
10 the basic velocity profile turned form parabolic to linear. This is because of the resistance 
offered by porous media on the flow. 

 

 
Fig.2. Basic velocity profile for different values of porous parameter  .108,4,1 andp =σ  
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Fig.3 shows that the plot of growth rate ic  as a function of horizontal wave number α  
for different values of the porous parameter, pσ  for fixed values of interaction 
parameter 5.0N = , Reynolds number, 10Re =  and magnetic Reynolds number, 2Rm = . 

 

 
 

Fig.3. Plot of growth rate ic  versus wave number α  for different values of  

pσ )5.0N,10R,2R,2( em ====β  
 

From Fig.3, it is clear that an increase in the value of  pσ  is to decrease the value of 
growth rate, which makes the system more stable. The reason for this is that the decrease in 
growth rate is due to the resistance offered by the solid particles in the porous media to the 
fluid. Fig.4 shows the variation in the growth rate of the most unstable mode against the wave 
number α  for different values of  with 2R,5.0N,5.1 mp ===σ  and .10Re =  It is 
observed that increasing the value of  is to suppress the disturbances and thus its effect is to 
eliminate the growth of small disturbances in the flow. 

 

 

Fig.4. Plot of growth rate ic  versus wave number α  for different values of β  
          )5.1,10R,2R,5.0N( pem ==== σ  
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Fig.5 shows that the plot of ic  with α  for different values of magnetic interaction 
parameter  N  for fixed values of  1,4.0R,2 pm === σβ  and 8Re = . From Fig.4, it may be 
inferred that for an increase in the value of N increases the value of ic , and thus make the 
system more unstable.  
 

 
 

Fig.5. Plot of growth rate ic  versus wave numberα for different values of N  

           )1,8R,5.0R,2( pem ==== σβ  
 
Fig.6 shows that the plot of ic  with α  for different values of  Magnetic Reynolds 

number mR for fixed values of  5.1,5.0N,2 p === σβ  and 10Re = . The reason being that 
an increase in mR   is to decrease the kinetic energy and hence, make the system more stable. 

 

 
 

 Fig.6. Plot of growth rate ic  versus wave numberα  for different values of  mR  

            )5.0N,10R,5.1,2( ep ==== σβ  
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4. CONCLUSIONS 
 
 
It is known that the stability of classical poiseuille flow, a sufficient condition for 

stability is the existence of point of inflexion. This stability of poiseuille flow was extended to 
magnetohydrodynamic stability of an inviscid poorly conducting parallel fluid flow in a 
porous media and in the presence of the magnetic field was investigated by several authors. 
They have shown that the stability is determined in terms of Reynolds number rather than the 
point of inflexion of the basic velocity profile. Recently Rudraiah et.al. have found a 
sufficient condition for stability of electrohydrodynamic stability of couple stress fluid flow in 
a channel. In the present paper, a sufficient condition for stability is obtained using the nature 
of the growth rate ic  as well as sufficiently small values of Reynolds number, eR . From this 
we found that strengthening or weakening of a sufficient condition for stability depends on 
the Magnetic interaction parameter N, porous parameter σp, Magnetic Reynolds number mR  
and ratio of viscosities β. From these, we conclude that the interaction of the magnetic field in 
the presence of porous media is more effective in stabilizing an electically conducting fluid 
compared with that of ordinary Newtonian viscous fluid. 
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