ORIGINAL PAPER

α-LIMIT SETS OF SUBSETS OF A METRIC SPACE

RAO B. SANKARA¹, VOLETY V.S. RAMACHANDRAM²

Manuscript received: 22.10.2014; Accepted paper: 12.12.2014; Published online: 30.12.2014.

Abstract. In this paper we prove some properties of limit sets of subsets in a metric space. We also prove that if the limit set of a subset is compact then it should be connected.

Keywords: metric space, α *-limit, subsets.*

1. INTRODUCTION

The concept of α -limit set of a subset *Y* in a metric space (*X*, d) on which there is a flow $f: X \times \mathbb{R} \to X$, is introduced by Changming Ding in [2]. Limit sets play an important role in understanding the dynamics of a system. Various types of limit sets are defined and studied by many authors. In this paper we made an attempt to study some properties of α -limit sets of subsets of a metric space. We also proved that if the α -limit set of a subset is compact then it should be connected.

2. PRELIMINARIES

Throughout this paper X is a compact metric space. A flow on X is a mapping $f: X \times \mathbb{R} \to X$ such that for all $x \in X$ and real numbers s and t, f(x,0) = x and f(f(x,t),s) = f(x,s+t). For a set $Y \subseteq X$ and $J \subseteq \mathbb{R}$, we define $Y \cdot J = \{x \cdot t = f(x,t) : x \in Y, t \in J\}$. A subset Y of X is invariant under f if $Y \cdot \mathbb{R} = Y$. The α -limit set of a subset Y of X is defined as $\alpha(Y) = \bigcap_{t \ge 0} \overline{Y \cdot (-\infty, -t]}$ (see [2]).

¹ Adikavi Nannaya University, Department of Mathematics, Rajahmundry, A.P., India. E-mail: <u>sankararao.b@gmail.com</u>.

² B.V.C. College of Engineering, Department of Mathematics, Rajahmundry, A.P., India. E-mail: <u>vvsrch@yahoo.com</u>

3. RESULTS

Lemma 1. For any subset Y of X, $\alpha(Y) = \bigcap_{n \ge 0} \overline{Y \cdot (-\infty, -n]}$.

Proof: If $x \in \alpha(Y)$, then $x \in \overline{Y \cdot (-\infty, -t]}$ for each $t \ge 0$. So, $x \in \overline{Y \cdot (-\infty, -n]}$ for each $n \ge 0$ and hence $x \in \bigcap_{n\ge 0} \overline{Y \cdot (-\infty, -n]}$. For the other part, we note that $\overline{Y \cdot (-\infty, -n]} = \bigcap_{n-1 < t \le n} Y \cdot (-\infty, -t]$. From this we get that $\bigcap_{n\ge 0} \overline{Y \cdot (-\infty, -n)} \subseteq \bigcap_{t\ge 0} \overline{Y \cdot (-\infty, -t]}$.

Lemma 2. If Y and Z are subsets of X such that $Y \subset Z$ then $\alpha(Y) \subset \alpha(Z)$.

Proof. If $x \in \alpha(Y)$ then $x \in \overline{Y \cdot (-\infty, -n]}$ for each $n \ge 0$. Since $Y \subset Z$, $x \in \overline{Z \cdot (-\infty, -n]}$ for each $n \ge 0$. This shows that $x \in \bigcap_{n \ge 0} \overline{Z \cdot (-\infty, -n]}$, which gives $\alpha(Y) \subset \alpha(Z)$.

Remark 1. For any subset Y of X, $\alpha(Y) \subseteq \alpha(\overline{Y})$.

Lemma 3. If A and B are any two subsets of X, then $\alpha(A \cup B) = \alpha(A) \cup \alpha(B)$.

Proof: We have
$$A \subseteq (A \cup B)$$
 and $B \subseteq (A \cup B)$ implying $\alpha(A) \cup \alpha(B) \subseteq \alpha(A \cup B)$.
On the other hand, $\alpha(A \cup B) = \bigcap_{n \ge 0} \overline{(A \cup B) \cdot (-\infty, -n)} = \bigcap_{n \ge 0} \overline{(A \cdot (-\infty, -n]) \cup (B \cdot (-\infty, -n]))}$
$$\subseteq \bigcap_{n \ge 0} \overline{(A \cdot (-\infty, -n])} \cup \overline{(B \cdot (-\infty, -n])} \subseteq \bigcap_{n \ge 0} \overline{A \cdot (-\infty, -n]} \cup \bigcap_{n \ge 0} \overline{B \cdot (-\infty, -n]} = \alpha(A) \cup \alpha(B).$$

Lemma 4. For any subset Y of X, $z \in \alpha(Y) \Leftrightarrow$ there are sequences $y_n \in Y$ and $t_n \in \mathbb{R}$, $t_n \to -\infty$ as $n \to \infty$ such that $\lim_{n \to \infty} y_n \cdot t_n = z$.

Proof: Let $z \in \alpha(Y)$ then $z \in \overline{Y \cdot (-\infty, -n]}$ for each $n \ge 0$ and so there exists sequences $y_n \in Y$ and $t_n \in (-\infty, -n]$ such that $\lim_{n \to \infty} y_n \cdot t_n = z$. As $t_n \in (-\infty, -n]$, we have $t_n \le -n$ which implies $\lim_{n \to \infty} t_n \le \lim_{n \to \infty} (-n) = -\infty$ so that $t_n \to -\infty$ as $n \to \infty$.

Conversely, suppose that there is a point z in X and there are two sequences $y_n \in Y$ and $t_n \in \mathbb{R}$, $t_n \to -\infty$ as $n \to \infty$ such that $\lim_{n \to \infty} y_n \cdot t_n = z$. Since $t_n \to -\infty$ as $n \to \infty$, we get $t_n \leq -n$, which means $t_n \in (-\infty, -n]$. As $y_n \in Y$ and $t_n \in (-\infty, -n]$, we get $y_n \cdot t_n \in Y \cdot (-\infty, -n]$. Since $\lim_{n \to \infty} y_n \cdot t_n = z$, we get that $z \in \alpha(Y)$. This proves the Lemma.

Lemma 5. For any subset Y of X, $\alpha(Y)$ is non-empty, closed and invariant.

Proof: By definition, the set $\alpha(Y)$ is the intersection of closed sets, so it is closed. Since these sets are nested, by the compactness of X we get that $\alpha(Y)$ is nonempty. It remains to prove the invariance. Let $\alpha(Y) = A$. We prove that $A \cdot \mathbb{R} = A$. By definition of $A \cdot \square$ it is clear that $A \subseteq A \cdot \square$.

Suppose $x \in A \cdot \mathbb{R}$. Then, $x = a \cdot r$ where $a \in A$ and $r \in \Box$. Since $a \in A$, by Lemma 4, there are two sequences $y_n \in Y$ and $t_n \in \Box$, $t_n \to -\infty$ as $n \to \infty$ such that $\lim_{n \to \infty} y_n \cdot t_n = a$. So, $x = a \cdot r = \lim_{n \to \infty} \{y_n \cdot t_n\} \cdot r = \lim_{n \to \infty} y_n \cdot \{t_n \cdot r\} = \lim_{n \to \infty} y_n \cdot p_n$, where $p_n = t_n \cdot r \in \mathbb{R}$. Now, by Lemma 4, it follows that $x \in A$.

Lemma 6. Suppose X is a Locally Compact metric space. Let $\{A_n\}$ be a decreasing sequence of closed, connected subsets of X uch that $\bigcap_{n=1}^{\infty} A_n$ is a nonempty compact subset of X. Then, for an arbitrary neighborhood U of $\bigcap_{n=1}^{\infty} A_n$, there is a natural number n such that $A_n \subseteq U$.

Proof: Let $A = \bigcap_{n=1}^{\infty} A_n$. Suppose on the contrary there exists a neighborhood U of A such that $A_n \not \leq U$ for each natural number n. Since A is the compact subset of a locally compact space X, there exists a neighborhood V of A such that $\overline{V} \subseteq U$ and it is compact. Since for each n, A_n is not contained in U, the set $A_n \cap V^c$ is nonempty. Also $A_n \cap V$ contains the set A, it is nonempty. From the connectedness of the set A_n it intersects to the boundary of V, ∂V . So, we can choose an element x_n in ∂V . Since ∂V is also compact, there exists a convergent subsequence of $\{x_n\}$ in ∂V . Without loss of generality we can assume that the sequence $\{x_n\}$ converges to a point x in ∂V . Let k be an arbitrary natural number. For n > k, $x_n \in A_k$. So, the limit point x is an element of $\overline{A_k}$. Since A_n is closed, $x \in A$. Hence, we derive a contradiction from the fact that V is the neighborhood of A. So, we can find a natural number n such that $A_n \subseteq U$.

Theorem 1. Suppose X is a locally compact metric space and $Y \subseteq X$ is a connected set. If $\alpha(Y)$ is compact then $\alpha(Y)$ is connected.

Proof: Let us assume that $\alpha(Y)$ is not connected. Then, there exists two disjoint clopen sets A and B of $\alpha(Y)$. Since X is locally compact A and B are also compact in X. Let U and V be the neighborhoods of A and B respectively. Put $A_k = \overline{Y \cdot (-\infty, -n]}$. Then $\{A_k\}$ is a decreasing sequence of closed subsets of X. By Lemma 6, there exists a natural number n such that $A \subseteq U \cup V$. Since A_n is connected, either $A_n \subseteq U$ or $A_n \subseteq V$. Suppose $A_n \subseteq U$. If $k \ge n$ we obtain that $A_k \subseteq A_n \subseteq U$ and so $\alpha(Y) \subseteq U$. This is a contradiction. Thus $\alpha(Y)$ is connected.

REFERENCES

 Hahng-Yun, C., Ahyoung, K., Jong-Suh, P., A topological Characterization of ω- Limit Sets on Dynamical Systems, arXiv:1306.0986v1 [math.DS], 2013.
Changming, D., The ω-limit sets of subsets in a metric space, *Czechoslovak Mathematical Journal*, **55**(130), 87, 2005.