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Abstract. In this paper we show that the two sided estimate of 𝑒𝑥 − (1 + 𝑥 𝑡⁄ )𝑡, stated 

in [1, Theorem 1], must be reversed for 𝑡 > 0 and 0 < 𝑥 < 1. This modification of Theorem 1 
in [1] led us to revisit the short proof given in [1] and improve the condition (𝑡 > (1 − 𝑥) 2⁄ ) 
for an inequality bounding 𝑒𝑥 − (1 + 𝑥 𝑡⁄ )𝑡, established in [2]. 
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1. INTRODUCTION  
 
 

It has been shown in [1, Theorem 1], by using an elementary consequence of Lagrange 
Theorem, that for all real numbers 𝑥, 𝑡 > 0, the following double inequality holds 

 

         𝑥 �𝑒 − �1 + 𝑥
𝑡
�
𝑡
𝑥� ��1 + 𝑥

𝑡
�
𝑡
𝑥�

𝑥−1

< 𝑒𝑥 − �1 + 𝑥
𝑡
�
𝑡

< 𝑥 �𝑒 − �1 + 𝑥
𝑡
�
𝑡
𝑥� 𝑒𝑥−1.            (1) 

 
As an application, the authors in [1] used (1) together with the estimate 
 

                      𝑒𝑥
2𝑡+2𝑥

< 𝑒 − �1 + 𝑥
𝑡
�
𝑡
𝑥 < 𝑒𝑥

2𝑡+𝑥
               (𝑥, 𝑡 > 0)                                  (2) 

 
in order to give a simple proof of the following double inequality 
  

     𝑥2𝑒𝑥

2𝑡+𝑥+max (𝑥,𝑥2)
< 𝑒𝑥 − �1 + 𝑥

𝑡
�
𝑡

< 𝑥2𝑒𝑥

2𝑡+𝑥
             �𝑥 > 0, 𝑡 > 1−𝑥

2
�,                        (3) 

 
stated in [2, Theorem 1].  

But after some numerical computations, we observe that (1) is not valid for 𝑥 < 1.  
For instance, taking 𝑥 = 𝑡 = 1 2⁄   in (1) we obtain  

 
                          1

2
(𝑒 − 2) 1

√2
< √𝑒 − √2 < 1

2
(𝑒 − 2) 1

√𝑒
.                                             (4) 

So, estimate (4) is not valid since 1
√𝑒

< 1
√2

. This remark motivates us to give a correct 
form of theorem 1 in [1], to verify if (3) is a simple consequence of Lagrange Theorem and if 
the supplementary condition (𝑡 > (1 − 𝑥) 2⁄ ) as required in (3) is necessary. 
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The paper is organized as follows. In Section 2 the main results Theorem 1, Corollary 
1 and Corollary 2 are presented. Corollary 1 is the correct formulation of theorem 1 in [1]. In 
section 3, we examine whether (3) is a simple consequence of (2) and the estimate given in 
Corollary 1. In section 4, Corollary 2 is used to show that the right hand-side inequality in (3) 
is valid for 𝑥 > 0 and 𝑡 > 0, improving the condition (𝑡 > (1 − 𝑥) 2⁄ ) of Theorem 1 in [2]. 

 
 

2. MAIN RESULTS  
 
 

In this section, we give Theorem 1, Corollary 1 and Corollary 2. The proof of 
Theorem 1 is based on lemma 1 which is a consequence of Lagrange Theorem. 

 
Theorem 1. Let 𝛼 > 0. Then we have: 
  i) If 𝑡 > 0 and 𝑥 > 𝛼, then 

𝑥
𝛼
�𝑒𝛼 − �1 + 𝑥

𝑡
�
𝛼𝑡
𝑥 � ��1 + 𝑥

𝑡
�
𝑡
𝑥�

𝑥−𝛼

< 𝑒𝑥 − �1 + 𝑥
𝑡
�
𝑡

< 𝑥
𝛼
�𝑒𝛼 − �1 + 𝑥

𝑡
�
𝛼𝑡
𝑥 � 𝑒𝑥−𝛼.             (5) 

 
  ii) If 𝑡 > 0 and 0 < 𝑥 < 𝛼, then 

𝑥
𝛼
�𝑒𝛼 − �1 + 𝑥

𝑡
�
𝛼𝑡
𝑥 � 𝑒𝑥−𝛼 < 𝑒𝑥 − �1 + 𝑥

𝑡
�
𝑡

<   𝑥
𝛼
�𝑒𝛼 − �1 + 𝑥

𝑡
�
𝛼𝑡
𝑥 � ��1 + 𝑥

𝑡
�
𝑡
𝑥�

𝑥−𝛼

.            (6) 

 
Corollary 1. 
  i) If 𝑡 > 0 and 𝑥 > 1, then 

  𝑥 �𝑒 − �1 + 𝑥
𝑡
�
𝑡
𝑥� ��1 + 𝑥

𝑡
�
𝑡
𝑥�

𝑥−1

< 𝑒𝑥 − �1 + 𝑥
𝑡
�
𝑡

< 𝑥 �𝑒 − �1 + 𝑥
𝑡
�
𝑡
𝑥� 𝑒𝑥−1.                   (7) 

 
  ii) If 𝑡 > 0 and 0 < 𝑥 < 1, then 

𝑥 �𝑒 − �1 + 𝑥
𝑡
�
𝑡
𝑥� 𝑒𝑥−1 < 𝑒𝑥 − �1 + 𝑥

𝑡
�
𝑡

< 𝑥 �𝑒 − �1 + 𝑥
𝑡
�
𝑡
𝑥� ��1 + 𝑥

𝑡
�
𝑡
𝑥�

𝑥−1

.                     (8) 

 
Corollary 2. If 𝑡 > 0 and 𝑥 > 0, then 

𝑥 �1 + 𝑥
𝑡
�
𝑡
�1 − 𝑡

𝑥
ln �1 + 𝑥

𝑡
�� < 𝑒𝑥 − �1 + 𝑥

𝑡
�
𝑡

< 𝑥𝑒𝑥 �1 − 𝑡
𝑥

ln �1 + 𝑥
𝑡
��.               (9) 

 
The proof of Theorem 1 is based on the following Lemma: 
 
Lemma 1. Let 𝑎 > 𝑏 > 0 and 𝑣 > 0. Then 
    i) For 𝑣 > 1, we have 
                             𝑣(𝑎 − 𝑏)𝑏𝑣−1 < 𝑎𝑣 − 𝑏𝑣 < 𝑣(𝑎 − 𝑏)𝑎𝑣−1.                                 (10) 
 
    ii) For 𝑣 < 1, we have 
                             𝑣(𝑎 − 𝑏)𝑎𝑣−1 < 𝑎𝑣 − 𝑏𝑣 < 𝑣(𝑎 − 𝑏)𝑏𝑣−1.                                 (11) 
 
Proof of Lemma 1. Applying Lagrange Theorem to the function 𝑓(𝑢) = 𝑢𝑣 with 

𝑏 < 𝑢 < 𝑎, yields 
                  𝑓(𝑎) − 𝑓(𝑏) = 𝑓′(𝑐)(𝑎 − 𝑏),                (𝑏 < 𝑐 < 𝑎).                             (12) 
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As 𝑓′(𝑢) = 𝑣𝑢𝑣−1 and 𝑓′′(𝑢) = 𝑣(𝑣 − 1)𝑢𝑣−2, the derivative 𝑓′(𝑢) increases for 
𝑣 > 1 and decreases for 0 < 𝑣 < 1. So, for 𝑣 > 1, (10) is a consequence of (12) and the 
estimate 𝑓′(𝑏) < 𝑓′(𝑐) < 𝑓′(𝑎). Similarly, for 0 < 𝑣 < 1, (11) is deduced from (12) and the 
estimate 𝑓′(𝑎) < 𝑓′(𝑐) < 𝑓′(𝑏). 

 
Proof of Theorem 1. Put 𝑣 = 𝑥 𝛼⁄ , 𝑎 = 𝑒𝛼 and 𝑏 = (1 + 𝑥 𝑡⁄ )𝛼𝑡 𝑥⁄  in (10) and (11) to 

obtain (5) and (6) respectively. 
 
Proof of Corollary 1. Put 𝛼 = 1 in Theorem 1. 
 
Proof of Corollary 2. To obtain (9), we let 𝛼 tends to zero in (5) and we use 

L’Hôpital’s rule to get the limit 
 

                               lim𝛼→0
𝑒𝛼−�1+𝑥𝑡�

𝛼𝑡
𝑥

𝛼
= 1 − 𝑡

𝑥
ln �1 + 𝑥

𝑡
�.                                          

 
 

3. COMPARAISON OF (7) AND (8) WITH (3)   
 
 

Multiplying (2) by 𝑥 𝑒𝑥−1 we obtain 
 

     𝑥
2𝑒𝑥

2𝑡+2𝑥
= 𝑥 𝑒𝑥

2𝑡+2𝑥
𝑒𝑥−1 < 𝑥 �𝑒 − �1 + 𝑥

𝑡
�
𝑡
𝑥� 𝑒𝑥−1 < 𝑥 𝑒𝑥

2𝑡+𝑥
𝑒𝑥−1 = 𝑥2𝑒𝑥

2𝑡+𝑥
     (𝑥, 𝑡 > 0).     (13) 

 
So, from (13) we conclude that the upper bound in (7) is better than the upper bound 

in (3) and the lower bound in (8) is better than the lower bound in (3). Remark that, when 
0 < 𝑥 < 1, the condition 𝑡 > (1 − 𝑥) 2⁄  in lower bound (3) can be relaxed to 𝑡 > 0. But this 
is not new, since the condition 𝑡 > (1 − 𝑥) 2⁄  concerns only the upper bound in (3). See the 
proof of (3) in [2].  

Note that, the proof of the inferiority of upper bound in (7) over upper bound in (3) 
was given in [1]. Also, as (1) is not valid for 0 < 𝑥 < 1, the rigorous proof given in [1] for the 
superiority of lower bound in (1) over lower bound in (3) is not valid.   

To compare the upper bound in (8) with the upper bound in (3) we study the sign of 
the function 𝐹𝑥(𝑡) defined by 

 

            𝐹𝑥(𝑡): = 𝑥 �𝑒 − �1 + 𝑥
𝑡
�
𝑡
𝑥� ��1 + 𝑥

𝑡
�
𝑡
𝑥�

𝑥−1

− 𝑥2𝑒𝑥

2𝑡+𝑥
              (0 < 𝑥 < 1).                 (14) 

 
Similarly, to compare the lower bound in (7) with the lower bound in (3) we study the 

sign of the function 𝐺𝑥(𝑡) defined by 
 

         𝐺𝑥(𝑡): = 𝑥 �𝑒 − �1 + 𝑥
𝑡
�
𝑡
𝑥� ��1 + 𝑥

𝑡
�
𝑡
𝑥�

𝑥−1

− 𝑥2𝑒𝑥

2𝑡+𝑥+𝑥2
                    (𝑥 > 1).               (15) 

 
The signs of 𝐹𝑥(𝑡) and 𝐺𝑥(𝑡) are studied by using the following Lemma. 
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Lemma 2. Let 𝑓(𝑡) be a continuous real function for 𝑡 > 𝑡𝑓. Where 𝑡𝑓 is the infimum 
of the real numbers 𝑠 such that: 𝑓(𝑠 + 𝜀) is a nonzero real number for every 𝜀 > 0. In the 
case where 𝑓(𝑡) is a nonvanishing well defined real function for every 𝑡 real, we take 
𝑡𝑓 = −∞. 

Suppose that  
                                                   lim𝑡→∞ 𝑓(𝑡) = 𝑙 ≠ 0.                                              (16) 
 
Then, 
  i) If 𝑙 > 0 we have 
 
                                      𝑓(𝑡) > 0        for 𝑡 > 𝑡𝑓.                                                      (17) 
 
  ii) If 𝑙 < 0 we have 
 
                                          𝑓(𝑡) < 0    for 𝑡 > 𝑡𝑓.                                                      (18) 
 
Proof of Lemma 2. Assume that 𝑙 ≠ ∓∞. Then from (16) we have: 

for every 𝜀 > 0 there exists a real 𝑡̃𝜀 such that for all real 𝑡, 
 

                                     𝑡 > 𝑡̃𝜀 ⟹ 𝑙 − 𝜀 < 𝑓(𝑡) < 𝑙 + 𝜀. 
 
If 𝑙 > 0 we take 𝜀 < 𝑙. So,  𝑓(𝑡) > 0 for 𝑡 > 𝑡̃𝜀. The case 𝑡𝑓 ≥ 𝑡̃𝜀 is obvious. If 

𝑡𝑓 < 𝑡̃𝜀, then 𝑓(𝑡) remains positive whenever 𝑡𝑓 < 𝑡 < 𝑡̃𝜀 since 𝑓 is continuous for 𝑡 > 𝑡𝑓. 
The cases 𝑙 < 0 and 𝑙 = ∓∞ can be treated in the same manner. 

Now, using computer software such as Maple, we obtain for 𝑡 → ∞ the expansions 
 

 𝑡2 �1 + 𝑥
𝑡
�
𝑡
𝑥 𝐹𝑥(𝑡) = − 1

24
(6𝑥 − 1)𝑥3𝑒𝑥+1 + 1

48𝑡
(3𝑥2 + 19𝑥 − 2)𝑥4𝑒𝑥+1 + Ο� 1

𝑡2
�          (19)    

   
and 

                       𝑡2 �1 + 𝑥
𝑡
�
𝑡
𝑥 𝐺𝑥(𝑡) = 1

24
𝑥3𝑒𝑥+1 + Ο�1

𝑡
�.                                             (20)    

                                            
Equation (19) yields 
 

                          lim𝑡→∞ 𝑡2𝐹𝑥(𝑡) = − 1
24

(6𝑥 − 1)𝑥3𝑒𝑥.                                            (21) 
 
So, for 1 6⁄ < 𝑥 < 1, we have lim𝑡→∞ 𝑡2𝐹𝑥(𝑡) < 0. Remark that 𝑡𝐹𝑥 ≥ 0 and 𝐹𝑥(𝑡) is 

continuous for 𝑡 > 0. Thus, by Lemma 2 we obtain 
 
                                    𝐹𝑥(𝑡) < 0       for 𝑡 >  𝑡𝐹𝑥 .                                                      (22) 
 
Inequality (22) means that for 𝑡 >  𝑡𝐹𝑥  the upper bound in (8) is better than the upper 

bound in (3).  
Observe that for 1 6⁄ < 𝑥 < ln (𝑒 − 1), the function 𝐹𝑥 admits at least one positive 

real root, since 
                                  lim𝑡→0+ 𝐹𝑥(𝑡) = 𝑥(𝑒 − 1 − 𝑒𝑥) > 0.                                       (23) 
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So, when 1 6⁄ < 𝑥 < ln (𝑒 − 1), 𝑡𝐹𝑥  is the largest positive real root of 𝐹𝑥. Numerical 
computations show that 𝑡𝐹𝑥  is decreasing as a function of 𝑥. For instance, 𝑡𝐹0.1666667 ≈
5.2 105, 𝑡𝐹0.1667 ≈ 500.2, 𝑡𝐹0.167 ≈ 52.13, 𝑡𝐹0.17 ≈ 5.25, 𝑡𝐹0.3 ≈ 0.13, 𝑡𝐹0.5 ≈ 0.0076 and 
𝑡𝐹ln (𝑒−1) = 0. It seems also that 𝑡𝐹𝑥 = 0 for ln(𝑒 − 1) < 𝑥 < 1. 

For  0 < 𝑥 < 1 6⁄  the limit in (21) is positive and for 𝑥 = 1 6⁄  we obtain from (19) 
that 

                                        lim𝑡→∞ 𝑡3𝐹1 6⁄ (𝑡) = 5𝑒1 6⁄

248832
.                                                (24) 

 
By Lemma 2, we conclude that for 0 < 𝑥 ≤ 1 6⁄ , 𝐹𝑥(𝑡) > 0 whenever 𝑡 > 𝑡𝐹𝑥 . So, in 

this case, for 𝑡 > 𝑡𝐹𝑥 the upper bound in (3) is better than the upper bound in (8). Here we 
observe, by using numerical computations, that 𝑡𝐹𝑥 = 0. 

Finally, for 𝑥 > 1, equation (20) yields 
 
                                         lim𝑡→∞ 𝑡2𝐺𝑥(𝑡) = 1

24
𝑥3𝑒𝑥 > 0                                         (25)    

 
and from (15) we obtain the limit 
 

lim
𝑡→0+

𝐺𝑥(𝑡) 𝑥⁄ = 𝑒 − 1 −
𝑒𝑥

1 + 𝑥
=:𝑔(𝑥). 

 
We have 𝑔(1) = 𝑒 2⁄ − 1 > 0 and 𝑔(∞) = −∞ < 0 with 
 
                                                        𝑔′(𝑥) = −𝑥𝑒𝑥 (1 + 𝑥)2⁄ < 0. 
 
So, 𝑔(𝑥) has a unique real root 𝑥� ≈ 1.428. Then, for 𝑥 > 𝑥� the function 𝑔(𝑥) is 

negative and according to (25), 𝐺𝑥(𝑡) admits at least one real root where 𝑡𝐺𝑥  is the greater 
one. As 𝐺𝑥(𝑡) is continuous for 𝑡 > 𝑡𝐺𝑥 , we obtain by Lemma 2 that 𝐺𝑥(𝑡) > 0 whenever 
𝑡 > 𝑡𝐺𝑥 . This means that for 𝑡 > 𝑡𝐺𝑥 , the lower bound in (7) is better than the lower bound in 
(3). On the other hand in a certain interval with 𝑡 < 𝑡𝐺𝑥, the lower bound in (3) is better than 
the lower bound in (7). Notice that the comparison with the lower bound in (5) leads to 
analogous results, since we have 

 

       𝑥
𝛼
�𝑒𝛼 − �1 + 𝑥

𝑡
�
𝛼𝑡
𝑥 � ��1 + 𝑥

𝑡
�
𝑡
𝑥�

𝑥−𝛼

− 𝑥2𝑒𝑥

2𝑡+𝑥+𝑥2
= (3𝛼−2)𝑥3𝑒𝑥

24𝑡2
+ Ο� 1

𝑡3
�. 

 
 

4. IMPROVING THE CONDITION OF THEOREM 1 IN [2] 
 
 
            Theorem 1 in [2] states that: 

  i) If 𝑥 > 0, 𝑡 > 0 and 𝑡 > (1 − 𝑥) 2⁄ , then 

                                       𝑥2𝑒𝑥

2𝑡+𝑥+max (𝑥,𝑥2)
< 𝑒𝑥 − �1 + 𝑥

𝑡
�
𝑡

< 𝑥2𝑒𝑥

2𝑡+𝑥
.                                         (26) 

 
 

  ii) If 𝑥 > 0, 𝑡 > 0 and 𝑡 > (𝑥 − 1) 2⁄ , then 
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                                𝑥2𝑒−𝑥

2𝑡−𝑥+𝑥2
< 𝑒−𝑥 − �1 − 𝑥

𝑡
�
𝑡

< 𝑥2𝑒−𝑥

2𝑡−2𝑥+min (𝑥,𝑥2).                         (27) 
 
Remark 1. According to the proof given in [2] for the two sided estimate (26), the left 

(resp. the right) hand-side inequality in (26) is valid for 𝑥 > 0 and 𝑡 > 0 (resp. 𝑥 > 0, 𝑡 > 0 
and 𝑡 > (1 − 𝑥) 2⁄ .  

 
Remark 2. Observe that for 𝑡 > 0, the domain of the function (1 − 𝑥 𝑡⁄ )𝑡 is 𝑡 > 𝑥. 

So, the conditions of (27) must be replaced by 𝑡 > 𝑥 > 0, since 𝑥 > (𝑥 − 1) 2⁄ . 
Now, we show that the upper bound in (9) is better than the upper bound in (26) for 

𝑡, 𝑥 > 0. We write the difference between the two upper bounds as follows 
 
         𝑥

2𝑒𝑥

2𝑡+𝑥
− 𝑥𝑒𝑥 �1 − 𝑡

𝑥
ln �1 + 𝑥

𝑡
�� = 𝑡𝑒𝑥 �(𝑥 𝑡⁄ )2

2+𝑥 𝑡⁄
− 𝑥

𝑡
+ ln �1 + 𝑥

𝑡
�� = 𝑡𝑒𝑥ℎ(𝑥 𝑡⁄ ). 

 
A computation of the derivative of the function ℎ yields 
 
                                                   ℎ′(𝑧) = 𝑧2

(2+𝑧)2(1+𝑧) > 0. 
 
Then the function ℎ is increasing and thus ℎ(𝑧) > ℎ(0) = 0 for 𝑧 > 0. Consequently, 

the upper bound in (9) is better than the upper bound in (26). So, this confirms that the right 
hand-side inequality in (26) is valid for 𝑥 > 0 and 𝑡 > 0. From this result and taking into 
account remark 1 and remark 2, we can state the following Theorem which improves the 
conditions of Theorem 1 in [2]. 

 
Theorem 2. If 𝑥 ≠ 0 and 𝑡 > max (0,−𝑥), then 
 

                             𝑥2𝑒𝑥

2𝑡+𝑥+max (𝑥,𝑥2)
< 𝑒𝑥 − �1 + 𝑥

𝑡
�
𝑡

< 𝑥2𝑒𝑥

2𝑡+2𝑥+min (−𝑥,𝑥2).                
 
 
5. CONCLUSION 
 
 

The upper and lower bounds in (3), for 𝑥 > 1 and 0 < 𝑥 < 1 respectively, are 
consequences of Lagrange Theorem when derived from the corresponding upper and lower 
bounds in Corollary 1. The upper bound in (3), for 𝑥, 𝑡 > 0, is also a consequence of 
Lagrange Theorem when derived from the upper bound in Corollary 2. Concerning the lower 
bound in (3) for 𝑥 > 1, and in view of section 3, we need another adequate lower bound 
obtained via Lagrange Theorem and better than the lower bound in (3). 
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