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Abstract. The aim of this paper is to describe an efficient numerical method for 

solving system of two-point boundary value problems subject to the Dirichelet boundary 
conditions. We present the construction of Numerov type method by assuming extra continuity 
condition on the solution. The order of the propose method is quadratic. This propose method 
is suitable for solving an obstacle problems. We have considered an obstacle problem and 
solved by the propose method to illustrate the efficiency and the accuracy. Results are 
compared with the other methods. 
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1. INTRODUCTION  
 

In this work, we consider a system of the second order boundary value problems of the 
form 

𝑢′′(𝑥) = �
𝑓1(𝑥,𝑢)                 𝑎 ≤ 𝑥 ≤ 𝑐
𝑓2(𝑥, 𝑢)                 𝑐 ≤ 𝑥 ≤ 𝑑
𝑓3(𝑥,𝑢)                 𝑑 ≤ 𝑥 ≤ 𝑏

�                                               (1) 

with the Dirichelet boundary conditions 
𝑦(𝑎) = 𝛼 ,   𝑦(𝑏) = 𝛽                          

where 𝛼, 𝛽 are real finite constants and real functions 𝑓1(𝑥,𝑢), 𝑓2(𝑥,𝑢), 𝑓3(𝑥, 𝑢) are 
respectively continuous in [𝑎, 𝑐], [𝑐,𝑑], [𝑑, 𝑏]. Also 𝑢(𝑥), 𝑢′(𝑥) are continuous at c and d.  
 An ordinary differential equations are used to model different kind of problems in all 
branches of engineering and sciences. Generally such type of systems arise in modeling and 
the study of one dimensional obstacle, unilateral, moving and free boundary value problems, 
[1- 4] and the references therein. In most cases it is impossible to obtain solutions of these 
problems for arbitrary choice of source function 𝑓𝑖(𝑥,𝑢), 𝑖 = 1,2,3 using analytical methods 
which satisfy the given boundary conditions. So in these cases we resort on approximate 
solution of the problems. A literature regarding the numerical solution of the two-point 
boundary value problem is given in [5-8]. The existence and uniqueness of the solution for the 
problem (1) is assumed. The specific assumption on 𝑓𝑖(𝑥,𝑦), 𝑖 = 1,2,3 to ensure existence and 
uniqueness will not be considered [1, 5, 9] in this article. In specific problems (1), there are 
many different methods and approaches such as collocation [10], splines [11], finite 
difference method [12, 13] , finite element [14] that are used to derive the approximate 
solutions. 
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 In this article we shall develop a Numerov type finite difference method for solving problems 
(1) numerically. The accuracy of the propose method is at least quadratic. A numerical 
comparison between the present and other methods reported in literature, to demonstrate the 
effectiveness of the method is given. 
 We have presented our work in this article as follows. In the next section we will 
derive finite difference method. In Section 3, we have discussed local truncation error in 
propose method and convergence under appropriate condition in Section 4. The applications 
of the proposed method to the model problems and illustrative numerical results have been 
produced to show the efficiency in Section 5. Discussion and conclusion on the performance 
of the method are presented in Section 6. 

 
  

2. DEVELOPMENT AND DERIVATION OF THE METHOD 
 
 
 We define N finite numbers of nodal points of the domain [a, b], in which the solution 
of the problem (1) is desired, as 𝑎 = 𝑥0 < 𝑥1 … … … . . < 𝑥𝑁−1 < 𝑥𝑁 = 𝑏 using uniform step 
length h such that  𝑥𝑖 = 𝑎 + 𝑖.ℎ, 𝑖 = 0 (1) 𝑁. Let denote the exact solution 𝑢(𝑥) at  𝑥 = 𝑥𝑖 by 𝑢𝑖. 
Also let us denote 𝑓𝑗𝑖 as the approximation of the theoretical value of the force function 
𝑓𝑗(𝑥, u ), j = 1,2,3 at node 𝑥 = 𝑥𝑖, 𝑖 = 1 (1) 𝑁. We can define other notations used in this article 
i.e. 𝑓𝑗𝑖±1 and 𝑢𝑖±1in the similar way. Also we define    𝑥𝑖+12

= 𝑥𝑖 + ℎ
2
  and 

 𝑢
𝑖+12

′′ = 𝑓𝑗 �𝑥𝑖+12
,𝑢𝑖+12

 � = 𝑓𝑗𝑖+12
 …etc for 𝑖 = 0 (1) 𝑁 − 1. Suppose we have to determine a 

number 𝑢𝑖, which is an approximation to the numerical value of the theoretical solution 𝑢(𝑥) 
of the problem (1) at the nodal point  x = 𝑥𝑖 , 𝑖 = 1 (1) 𝑁 − 1. Thus the problem (1) at node  𝑥𝑖 
may be written as, 

𝑢𝑖′′ = �
𝑓1𝑖                 𝑎 ≤ 𝑥 =  𝑥𝑖 ≤ 𝑐
𝑓2𝑖                 𝑐 ≤ 𝑥 =  𝑥𝑖 ≤ 𝑑
𝑓3𝑖                 𝑑 ≤ 𝑥 =  𝑥𝑖 ≤ 𝑏

                                         (2)� 

 
Using method of undetermined coefficients, Taylor's series expansion and following the ideas 
in [15, 16] we descretize problem (2) at nodes in [a, b], 

3𝑢
𝑖−12

− 𝑢
𝑖+12

= 2𝑢𝑖−1 +
ℎ2

4
�𝑢𝑖−1′′ − 4𝑢

𝑖−12

′′ � + 𝑟𝑖 ,            𝑖 = 1,                 

−𝑢
𝑖−32

+ 2𝑢
𝑖−12

− 𝑢
𝑖+12

= −ℎ2𝑢
𝑖−12

′′ + 𝑟𝑖 ,                                 2 ≤ 𝑖 ≤ 𝑁 − 1,           (3) 

                        −𝑢
𝑖−32

+ 3𝑢
𝑖−12

= 2𝑢𝑖 +
ℎ2

4
�−4𝑢

𝑖−12

′′ + 𝑢𝑖′′� + 𝑟𝑖 ,         𝑖 = 𝑁 ,                           

 
 Thus, after neglecting the remainder terms 𝑟𝑖 , 𝑖 = 1,2, … . ,𝑁 in (3), we will obtain our 
propose Numerov Type finite difference method as a system of equations in 𝑢𝑖−12

 , 𝑖 =

1,2, … . . ,𝑁.   
 Thus, the method consists in finding an approximation 𝑢𝑖 for the theoretical solution 
𝑢(𝑥𝑖), 𝑖 = 1(1)𝑁 − 1 of the problem (1) by solving the system (𝑁 − 1) × (𝑁 − 1) equations (3) 
in 𝑢𝑖−12

 . Finally we approximate 𝑢𝑖 by second order difference approximation  

𝑢𝑖 =
1
2
�𝑢

𝑖+12
+ 𝑢

𝑖−12
� ,         𝑖 = 1,2, … … . . ,𝑁 − 1.                           (4) 
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3. THE CONVERGENCE ANALYSIS OF THE METHOD 
  
 
 In this section we consider the convergence of the method (3). So we consider 
following linear problem, 

0 = −𝑢′′(𝑥) + �
𝑓1(𝑥)                𝑎 ≤ 𝑥 ≤ 𝑐
𝑓2(𝑥)                𝑐 ≤ 𝑥 ≤ 𝑑 
𝑓3(𝑥)                 𝑑 ≤ 𝑥 ≤ 𝑏

  �                         (5) 

subject to the boundary conditions 𝑢(𝑎) = 𝛼 and 𝑢(𝑏) = 𝛽. We can write the proposed 
method (3) in the matrix form  

        𝑫𝑼 + 𝑺 + 𝑹 = 𝟎                                                                   (6) 
where 𝑫 = (𝑑𝑙𝑚)𝑁×𝑁 a tri-diagonal matrix and defined as 

 

𝑑𝑙𝑚 = �
3               𝑙 = 𝑚, 𝑙 = 1,𝑁 
2                2 ≤ 𝑙 = 𝑚 ≤ 𝑁 − 1
−1                                 |𝑙 − 𝑚| = 1

�                               (7) 

 𝑼 = (𝑈 �𝑥𝑖−12
�)𝑁×1, 1 ≤ 𝑙 = 𝑖 ≤ 𝑁 is exact solution of problem (5), 𝑺 = (𝑠𝑙) and 𝑹 = (𝑟𝑙) 

are N-dimensional column vectors such that 

𝑠𝑙 =

⎩
⎪⎪
⎨

⎪⎪
⎧−2𝛼 −

ℎ2

4
�𝑓1(𝑥𝑖−1) − 4𝑓1(𝑥

𝑖−12
)�  ,                               𝑙 = 𝑖 = 1

ℎ2𝑓𝑗 �𝑥𝑖−12
� ,                                     2 ≤ 𝑙 = 𝑖 ≤ 𝑁 − 1,   𝑗 = 1,2,3

−2𝛽 −
ℎ2

4
�𝑓3(𝑥𝑖) − 4𝑓3(𝑥

𝑖−12
)�  ,                               𝑙 = 𝑖 = 𝑁

               (8) � 

 and  

𝑟𝑙 =

⎩
⎪⎪
⎨

⎪⎪
⎧−

ℎ4

64
𝑢(4) �𝑥

𝑖−12
+ 𝜃𝑖ℎ� ,               0 ≤ 𝜃𝑖 ≤ 1,     𝑙 =  𝑖 = 1

ℎ4

12
𝑢(4) �𝑥

𝑖−12
+ 𝜃𝑖ℎ� ,                         2 ≤ 𝑙 = 𝑖 ≤ 𝑁 − 1,

−
ℎ4

64
𝑢(4) �𝑥

𝑖−12
+ 𝜃𝑖ℎ�  ,                                         𝑙 = 𝑖 = 𝑁

                      (9) � 

 
 Let 𝑢𝑖−12

 be an approximate value of 𝑈𝑖−1 
2  , 𝑖 = 1,2, … … . ,𝑁 which we obtained by 

solving test problem (5) by propose method (3) after neglecting the remainder terms. We 
write (3) in matrix form, 

        𝑫𝒖 + 𝑺 = 𝟎                                                                                (10)  
where 𝒖 = (𝑢 �𝑥𝑖−12

�)𝑁×1, 1 ≤ 𝑙 = 𝑖 ≤ 𝑁 is approximate solution of problem (5). From (6) 

and (10) we have, 
          𝑫(𝑼− 𝒖) + 𝑹 = 𝟎                                                                 (11) 

 Let define an error in exact and approximate solution of (5),   𝑒𝑖−12
= 𝑈𝑖−12

− 𝑢𝑖−12
 . 

 Thus from (11) we have, 
𝑫𝒆 + 𝑹 = 𝟎                                                                                      (12) 

where 𝒆 = (𝑒𝑖−12
)𝑁×1, 1 ≤ 𝑙 = 𝑖 ≤ 𝑁. Thus from (12), we conclude that the convergence of 

the propose difference method depends on the property of matrix D. To simplify we need to 
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determine 𝑫−𝟏, by the row sum criterion 𝑫 is monotone [17]. Thus 𝑫−𝟏 exist and 𝑫−𝟏 ≥ 0. 
We determine 𝑫−𝟏 = (𝑑𝑙𝑚−1) explicitly where 

𝑑𝑙𝑚−1 = �

(2𝑙 − 1)(2𝑁 − 2𝑚 + 1)
4𝑁

              𝑙 ≤ 𝑚

(2𝑚 − 1)(2𝑁 − 2𝑙 + 1)
4𝑁

            𝑙 ≥ 𝑚

�                          (13)              

and the row sum of 𝑫−𝟏 is 

� 𝑑𝑙𝑚−1
𝑁

𝑚=1

=
2𝑙(𝑁 − 𝑙) − (𝑁 − 2𝑙)

4
                                    (14) 

 Hence from (13) we obtain 

�𝑫−𝟏� = max
1≤𝑙≤𝑁

� |𝑑𝑙𝑚−1|  ≤
1
2
�

(𝑏 − 𝑎)2

ℎ2
+ 1�           (15)

𝑁

𝑚=1

 

 Thus from equation (12) and (15), we have 
 

‖𝒆‖ ≤
1
2
�

(𝑏 − 𝑎)2

ℎ2
+ 1� ‖𝑹‖                                        (16) 

Let 𝑀 = max
𝑎≤𝑥≤𝑏

 �𝑢(4)(𝑥)�, then from (9) and (16) we have 
 

‖𝒆‖ ≤
ℎ4

24
�

(𝑏 − 𝑎)2

ℎ2
+ 1�𝑀 ≤ 𝑂(ℎ2)                        (17) 

 Thus we conclude from equation (17) that ‖𝒆‖ → 0 as ℎ → 0. Thus we have proved 
that theoretically propose method is convergent and order of convergence is at least quadratic. 
 
 
4. NUMERICAL EXPERIMENTS 
 
 
 In this section, we have applied the proposed method (3) to solve numerically two 
different model problems. We have used Gauss-Seidel iteration method to solve the system of 
linear equations arises from equation (3). All computations were performed on a Windows 
2007 Ultimate operating system in the GNU FORTRAN environment version 99 compiler 
(2.95 of gcc) on Intel Core i3-2330M, 2.20 Ghz PC. Let 𝑢𝑖 , the numerical value calculated by 
formulae (3), an approximate value of the theoretical solution 𝑢(𝑥) at the grid point  𝑥 = 𝑥𝑖. 
The maximum absolute error 
 

𝑀𝐴𝐸(u) = max
1≤ 𝑖 ≤𝑁−1

|𝑢(𝑥𝑖) − 𝑢𝑖| 
 

are shown in Tables 1-6, for different value of  ℎ, the step length. Also we have shown 
different values of MAE in the tables reported in literature for comparison purpose computed 
by different method. 
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Example 1. Consider the following linear system of two-point boundary value problem 

𝑢′′(𝑥) =

⎩
⎪
⎨

⎪
⎧ 0                            0 ≤ 𝑥 ≤

𝜋
4

𝑢(𝑥) − 1                
𝜋
4
≤ 𝑥 ≤

3𝜋
4

  0                          
3𝜋
4
≤ 𝑥 ≤ 𝜋

� 

with the boundary conditions 𝑦(0) = 0, 𝑦(𝜋) = 0. In Tables1-4, the maximum absolute error 
presented in exact solution 
 

𝑢(𝑥) =

⎩
⎪⎪
⎨

⎪⎪
⎧

4
𝛾1
𝑥                                           0 ≤ 𝑥 ≤

𝜋
4

1 −
4
𝛾2

cosh �
𝜋
2
− 𝑥�                

𝜋
4
≤ 𝑥 ≤

3𝜋
4

4
𝛾1

(𝜋 − 𝑥  )                           
3𝜋
4
≤ 𝑥 ≤ 𝜋

� 

where 𝛾1 = 𝜋 + 4 coth �𝜋
4
� and 𝛾2 = 𝜋 sinh �𝜋

4
� + 4 cosh �𝜋

4
� . 

 
Example 2. In [21], consider the following linear system of two-point boundary value 
problem 

𝑢′′(𝑥) =

⎩
⎪
⎨

⎪
⎧ 2                            0 ≤ 𝑥 ≤

𝜋
4

𝑢(𝑥) + 1                
𝜋
4
≤ 𝑥 ≤

3𝜋
4

  2                          
3𝜋
4
≤ 𝑥 ≤ 𝜋

� 

with the boundary conditions 𝑦(0) = 0, 𝑦(π) = 0 . In Tables 5-6, the the maximum absolute 
error presented in exact solution  

𝑢(𝑥) =

⎩
⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎧

𝑥2 + �
(𝜋2 − 16) sinh �𝜋4�

4𝛾
−
𝜋
2
�𝑥                                             0 ≤ 𝑥 ≤

𝜋
4

−1 −
(𝜋2 − 16)

4𝛾
cosh �

𝜋
2
− 𝑥�                                                 

𝜋
4
≤ 𝑥 ≤

3𝜋
4

𝑥2 + �
(𝜋2 − 16) sinh �𝜋4�

4𝛾
+

3𝜋
2
��

3𝜋
4
− 𝑥�  − �

9𝜋2

16
+

(𝜋2 − 16)
4𝛾

cosh �
𝜋
4
� + 1�        

                                                                                                
3𝜋
4
≤ 𝑥 ≤ 𝜋

� 

where 𝛾 = 𝜋 sinh �𝜋
4
� + 4 cosh �𝜋

4
� . 

 

Table 1. Maximum absolute error ( )i iu x u−  in  example 1. 

 
N 

MAE  
MAE 0 ≤ 𝑥 ≤

𝜋
4

 
𝜋
4
≤ 𝑥 ≤

3𝜋
4

 
3𝜋
4
≤ 𝑥 ≤ 𝜋 

16 .20767539(-2) .28324185(-2) .15575651(-2) .28324185(-2) 
32 .64796966(-3) .74993078(-3) .39345660(-3) .74993078(-3) 
64 .17962954(-3) .19265356(-3) .98950048(-4) .19265356(-3) 

128 .47008900(-4) .48952381(-4) .24801866(-4) .48952381(-4) 
256 .11527084(-4) .12338443(-4) .62350191(-5) .12338443(-4) 
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512 .26414673(-5) .31437369(-5) .15560545(-5) .31437369(-5) 
1024 .62554716(-6) .81915579(-6) .39376394(-6) .81915579(-6) 
2048 .13912775(-6) .25000776(-6) .95740724(-7) .25000776(-6) 

 
 

N 
MAE  

MAE 0 ≤ 𝑥 ≤
𝜋
4

 
𝜋
4
≤ 𝑥 ≤

3𝜋
4

 
3𝜋
4
≤ 𝑥 ≤ 𝜋 

20 .14558636(-2) .18513107(-2) .10009173(-2) .18513107(-2) 
40 .43250457(-3) .48430692(-3) .25231281(-3) .48430692(-3) 
80 .11727104(-3) .12406982(-3) .63366075(-4) .12406982(-3) 

160 .30224175(-4) .31470874(-4) .15920774(-4) .31470874(-4) 
320 .72047378(-5) .78972371(-5) .39998449(-5) .78972371(-5) 

 

Table 2. Comparison of the maximum absolute error ( )i iu x u− in  example 1. 

 
  N 

MAE 
Our method [13] 

32 .74993078(-3) .1183(-2) 
64 .19265356(-3) .3032(-3) 

128 .48952381(-4) .6892(-4) 
 

 
N 

MAE 
Our method [13] [18] [19] 

20 .18513107(-2) .165(-2) .220(-2) .194(-2) 
40 .48430692(-3) .433(-3) .587(-3) .499(-3) 
80 .12406982(-3) .111(-3) .151(-3) .127(-3) 

 

N MAE 
scheme (20) 

[12] 
 

[12] 
 

[20] 
 

[10] 
20 .250(-1) .232(-1) .182(-1) .140(-1) 
40 .129(-1) .121(-1) .917(-2) .771(-2) 
80 .658(-2) .617(-2) .461(-2) .404(-2) 

 

Table 3. Maximum absolute error ( ) ( )( -1/ 2) -1/ 2-i iu x u  in  example 1. 

 
N 

MAE  
MAE  0 ≤ 𝑥 ≤ 𝜋

4
 𝜋

4
≤ 𝑥 ≤

3𝜋
4

 
3𝜋
4
≤ 𝑥 ≤ 𝜋 

16 .24228767(-2) .11897720(-7) .75432469(-8) .24228767(-2) 
32 .69425604(-3) .11598400(-7) .14858972(-7) .69425604(-3) 
64 .18564930(-3) .22813627(-7) .11848045(-7) .18564930(-3) 

128 .47885918(-4) .23470047(-7) .12605618(-7) .47885918(-4) 
256 .11820583(-4) .27208914(-7) .14860534(-7) .11820583(-4) 
512 .28011168(-5) .27879866(-7) .14716609(-7) .28011168(-5) 

1024 .70537186(-6) .28689437(-7) .14870607(-7) .70537186(-6) 
2048 .16413892(-6) .29536370(-7) .14599374(-7) .16413892(-6) 

 

Table 4. Comparison of the maximum absolute error ( ) ( )( -1/ 2) -1/ 2-i iu x u  in  example 1. 

 
  N 

MAE 
Our method Eisa Al Said 

32 .69425604(-3) .9041(-3) 
64 .18564930(-3) .2350(-3) 

128 .47885918(-4) .5989(-4) 
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Table 5. Maximum absolute error |𝒖(𝒙𝒊) − 𝒖𝒊| in  example 2 . 
 

N 
MAE  

MAE 0 ≤ 𝑥 ≤
𝜋
4

 
𝜋
4
≤ 𝑥 ≤

3𝜋
4

 
3𝜋
4
≤ 𝑥 ≤ 𝜋 

16 .77617411(-2) .21318281(-2) .96382825(-2) .77617411(-2) 
32 .21615957(-2) .42546634(-3) .24097555(-2) .24097555(-2) 
64 .57064334(-3) .91799520(-4) .60254638(-3) .60254638(-3) 

128 .14698156(-3) .21406437(-4) .15077036(-3) .15077036(-3) 
256 .37537640(-4) .51939742(-5) .37845151(-4) .37845151(-4) 
512 .94746847(-5) .14388813(-5) .95309624(-5) .95309624(-5) 

1024 .24413368(-5) .48520707(-6) .25048184(-5) .95309624(-5) 
2048 .79235326(-6) .13631579(-6) .75771072(-6) .79235326(-6) 

 
 

N 
MAE  

MAE 0 ≤ 𝑥 ≤
𝜋
4

 
𝜋
4
≤ 𝑥 ≤

3𝜋
4

 
3𝜋
4
≤ 𝑥 ≤ 𝜋 

20 .51864525(-2) .12580240(-2) .61685122(-2) .61685122(-2) 
40 .14137383(-2) .25761966(-3) .15421555(-2) .15421555(-2) 
80 .36917866(-3) .56751993(-4) .38558699(-3) .38558699(-3) 

160 .94546485(-4) .13359811(-4) .96587333(-4) .96587333(-4) 
320 .24005367(-4) .32866253(-5) .24266303(-4) .24266303(-4) 

 
Table 6. Maximum absolute error �𝒖 �𝒙𝒊−𝟏𝟐

� − 𝒖𝒊−𝟏𝟐
� in  example 2 . 

 
N 

MAE  
MAE  0 ≤ 𝑥 ≤ 𝜋

4
 𝜋

4
≤ 𝑥 ≤

3𝜋
4

 
3𝜋
4
≤ 𝑥 ≤ 𝜋 

16 .65680565(-2) .29460409(-7) .15409878(-7) .65680565(-2) 
32 .18600447(-2) .24461363(-7) .24997565(-7) .18600447(-2) 
64 .49444858(-3) .26573861(-7) .29476160(-7) .49444858(-3) 

128 .12676643(-3) .29039197(-7) .29102319(-7) .12676643(-3) 
256 .31954012(-4) .29499715(-7) .29360178(-7) .31954012(-4) 
512 .77428585(-5) .29684921(-7) .29785877(-7) .77428585(-5) 

1024 .16237202(-5) .29742679(-7) .29584607(-7) .16237202(-5) 
2048 .32899888(-6) .29685774(-7) .29575483(-7) .32899888(-6) 

 
 
CONCLUSION 
 
 
 A finite difference scheme is presented for numerical solution of system of two-point 
boundary value problems. It follows from derivation and discussion, the method (3) is at least 
of quadratic order which is well evident in computational results. We obtain comparable 
results using less number of functions evaluations at interior grid points unlike [13]. We can 
claim, in general that our method is better than other finite difference method. Numerical 
results show that our method generates results more accurate than that method in [13]. It is an 
alternative method, to get reliable results with less effort and obtain competitive results to 
those obtained with other methods with less computational cost. 
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