HOW TO FIND THE INVERSE OF A MATRIX IN LORENTZ SPACE

MUSTAFA BILICI ${ }^{1}$, ERGIN BAYRAM ${ }^{2}$

Manuscript received: 31.08.2015; Accepted paper: 19.11.2015;
Published online: 30.12.2015.

Abstract

In the present paper, we define adjoint of a Lorentzian matrix. We give a theorem to find the inverse of a matrix using adjoint of it. Also a shortcut to find the inverse of a $2 x 2$ matrix is presented. Finally, we show that the inverse of a matrix can be found by changing the identity matrix with L-identity matrix in the augmented matrix and using GaussJordan elimination method. Furthermore, we introduce some new theorems related with adjoint and inverse of a matrix.

Keywords: Lorentz space, Lorentzian matrix, inverse of a matrix.

1. INTRODUCTION

A real $n \times n$ matrix A is said to be Lorentzian if and only if associated linear transformation $A: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ defined by $\mathrm{A}(\mathrm{X})=\mathrm{AX}$ is Lorentzian. The set of all Lorentzian $n \times n$ matrices together with matrix multiplication forms a group $O(1, n-1)$; called the Lorentz group of $n \times n$ matrices. The group $O(1, n-1)$ is naturally isomorphic to the group of Lorentz transformation of \mathbb{R}^{n} (For more details see [3]). Gündoğan and Keçilioğlu [1] defined a new matrix multiplication by using Lorentzian inner product. With this multiplication they showed that \mathbb{R}_{n}^{n} is an algebra with unit.

Inspired by the paper of Gündoğan and Keçilioğlu, we define adjoint of a Lorentzian matrix and some notions in Lorentz space. Also we express some methods to find the inverse of a square matrix and give some theorems.

2. PRELIMINARIES

Let us denote the set of all $m \times n$ matrices by \mathbb{R}_{n}^{m}. It is known that this set is a real vector space with matrix addition and multiplication (see [2]). Let L^{n} be the vector space \mathbb{R}^{n} equipped with the Lorentzian inner product

[^0]$$
\langle x, y\rangle_{L}=-x_{1} y_{1}+\sum_{i=2}^{n} x_{i} y_{i}, x=\left(x_{1}, x_{2, \ldots}, x_{n}\right), y=\left(y_{1}, y_{2, \ldots,} y_{n}\right) .
$$

Definition 1. A function $\phi: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ is a Lorentz transformation if and only if

$$
\langle\phi(x), \phi(y)\rangle_{L}=\langle x, y\rangle_{L}, \forall x, y \in \mathbb{R}^{n}[3] .
$$

Definition 2. Let $A=\left[a_{i j}\right] \in \mathbb{R}_{n}^{m}, \quad B=\left[b_{i k}\right] \in \mathbb{R}_{p}^{n}$. Matrix multiplication ". $L^{\prime \prime}$ is defined by [1] as

$$
A_{{ }_{L}} B=\left[-a_{i 1} b_{1 k}+\sum_{j=2}^{n} a_{i j} b_{j k}\right] .
$$

We denote \mathbb{R}_{n}^{m} with L-multiplication by L_{n}^{m}.
Definition 3. An $n \times n$ L-identity matrix according to L-multiplication, denoted by I_{n}, is defined by [1] as

$$
I_{n}=\left[\begin{array}{cccccc}
-1 & 0 & . & . & . & 0 \\
0 & 1 & 0 & . & . & 0 \\
. & . & . & . & . & . \\
0 & . & . & . & 0 & 1
\end{array}\right] .
$$

Definition 4. An $n \times n$ matrix A is called L-invertible if there exists an $n \times n$ matrix B such that $A_{\cdot L} B=B_{\cdot L} A=I_{n}$. Then B is called the L-inverse of A and is denoted by $\mathrm{A}^{-1}[1]$.

Definition 5. Transpose of a matrix $A=\left[a_{i j}\right] \in L_{n}^{m}$ is denoted by A^{T} and defined as $A^{T}=\left[a_{j i}\right] \in L_{m}^{n}[1]$.

Definition 6. L-determinant of a matrix $A=\left[a_{i j}\right] \in \mathbb{R}_{n}^{n}$ is denoted by $\operatorname{det} \mathrm{A}$ and defined as

$$
\operatorname{det} A=\sum_{\sigma \in S_{n}} s(\sigma) a_{\sigma(1)!} a_{\sigma(2) 2} \ldots a_{\sigma(n) n}
$$

where Sn is the set of all permutations of the set $\{1,2, \ldots, n\}$ and $s(\sigma)$ is the sign of the permutation σ [1].

Theorem 1. $\forall A, B \in L_{n}^{n}, \operatorname{det}\left(A_{\cdot L} B\right)=-\operatorname{det} A \operatorname{det} B[1]$.

3. INVERSE OF A MATRIX

In this section, we present some methods to find the inverse of a matrix in Lorentz space. The first step is to define required notions for the study. Also, we give some new theorems related with adjoint and inverse of a matrix.

Definition 7. Let $A=\left[a_{i j}\right] \in L_{n}^{m}$ and $\alpha_{i j}$ be the cofactor of $a_{i j}, \mathrm{i}=1,2, \ldots, \mathrm{~m} ; \mathrm{j}=1,2, \ldots, \mathrm{n}$.
L- adjoint of a matrix A is denoted by $a d j_{L} A$ and

$$
\operatorname{adj}_{L} A=\left[\begin{array}{cccccc}
c_{11} & c_{12} & . & . & . & c_{1 m} \\
c_{21} & c_{22} & . & . & . & c_{2 m} \\
. & \cdot & . & . & . & \cdot \\
c_{n 1} & c_{n 2} & . & . & . & c_{n m}
\end{array}\right],
$$

where $c_{j i}=\varepsilon \alpha_{i j}$ and $\varepsilon=\left\{\begin{array}{l}-1,2 \leq j \leq n, i=1, \\ -1, j=1,2 \leq i \leq m, \\ 1, \text { otherwise } .\end{array}\right.$
Theorem 2. Let $A \in L_{n}^{m}$. Then

$$
A_{\cdot L}\left(\operatorname{adj}_{L} A\right)=\left(a d j_{L} A\right)_{L} A=(\operatorname{det} A) I_{n .}
$$

Proof. Let $A=\left[a_{i j}\right] \in L_{n}^{m}$ and $\operatorname{adj}_{L} A=\left[c_{j i}\right] \in L_{n}^{m}$. Then

$$
\begin{aligned}
A_{L} a d j_{L} A & =\left[\begin{array}{cccccc}
a_{11} & a_{12} & \cdot & \cdot & \cdot & a_{1 n} \\
a_{21} & a_{22} & \cdot & \cdot & \cdot & a_{2 n} \\
\cdot & \cdot & \cdot & \cdot & \cdot & \cdot \\
a_{n 1} & a_{n 2} & \cdot & \cdot & \cdot & a_{n m}
\end{array}\right] \cdot L\left[\begin{array}{cccccc}
c_{11} & c_{12} & \cdot & \cdot & \cdot & c_{1 n} \\
c_{21} & c_{22} & \cdot & \cdot & \cdot & c_{2 n} \\
\cdot & \cdot & \cdot & \cdot & \cdot & \cdot \\
c_{n 1} & c_{n 2} & \cdot & \cdot & \cdot & c_{n n}
\end{array}\right] \\
& =\left[\begin{array}{cccccc}
a_{11} & a_{12} & \cdot & \cdot & \cdot & a_{1 n} \\
a_{21} & a_{22} & \cdot & \cdot & \cdot & a_{2 n} \\
\cdot & \cdot & \cdot & \cdot & \cdot & \cdot \\
a_{n 1} & a_{n 2} & \cdot & \cdot & \cdot & a_{n n}
\end{array}\right] \cdot L\left[\begin{array}{cccccc}
\alpha_{11} & -\alpha_{21} & \cdot & \cdot & \cdot & -\alpha_{n 1} \\
-\alpha_{12} & \alpha_{22} & \cdot & \cdot & \cdot & \alpha_{n 2} \\
\cdot & \cdot & \cdot & \cdot & \cdot & \cdot \\
-\alpha_{1 n} & \alpha_{2 n} & \cdot & \cdot & \cdot & \alpha_{n n}
\end{array}\right] \\
& =\left[\begin{array}{cccccc}
-\operatorname{det} A & 0 & \cdot & \cdot & \cdot & 0 \\
0 & \operatorname{det} A & 0 & \cdot & \cdot & 0 \\
\cdot & \cdot & \cdot & \cdot & \cdot & \cdot \\
0 & \cdot & \cdot & \cdot & 0 & \operatorname{det} A
\end{array}\right] \\
& =\operatorname{diag}(-\operatorname{det} A, \operatorname{det} A, \ldots, \operatorname{det} A) \\
& =(\operatorname{det} A)\left[\begin{array}{cccccc}
-1 & 0 & \cdot & \cdot & \cdot & 0 \\
0 & 1 & 0 & \cdot & \cdot & 0 \\
\cdot & \cdot & \cdot & \cdot & \cdot & \cdot \\
0 & \cdot & \cdot & \cdot & 0 & 1
\end{array}\right] \\
& =(\operatorname{det} A) I_{n},
\end{aligned}
$$

where $c_{i j}(i, j=1,2, \ldots, n)$ as in definition 7 . Similarly one can show that $\operatorname{adj}_{L} A_{L} A=(\operatorname{det} A) I_{n}$.

Theorem 3. $A, B \in L_{n}^{n}$ be L-invertible matrices. Then

$$
\operatorname{adj}_{L}\left(A \cdot_{L} B\right)=-\left(a d j_{L} B\right)_{L}\left(a d j_{L} A\right)
$$

Proof. Observe that

$$
\begin{aligned}
A \cdot \cdot_{L} B \cdot \cdot_{L} a d j_{L}\left(A \cdot \cdot_{L} B\right) & =a d j_{L}\left(A \cdot{ }_{L} B\right) \cdot{ }_{L} A \cdot{ }_{L} B \\
& =\left(\operatorname{det}\left(A \cdot{ }_{L} B\right)\right) I_{n} \\
& =-(\operatorname{det} A \operatorname{det} B) I_{n}, \\
A \cdot{ }_{L} B \cdot \cdot_{L}\left(a d j B \cdot \cdot_{L} a d j A\right) & =A \cdot{\bullet_{L}}\left(B \cdot{ }_{L} a d j_{L} B\right) \cdot_{L} a d j_{L} A \\
& =A \cdot{ }_{L}\left((\operatorname{det} B) I_{n}\right){ }_{L} a d j_{L} A \\
& =\operatorname{det} B\left(A \cdot{ }_{L} a d j_{L} A\right)=\operatorname{det} B\left[(\operatorname{det} A) I_{n}\right] \\
& =(\operatorname{det} A \operatorname{det} B) I_{n} .
\end{aligned}
$$

So we have

$$
A \cdot_{L} B \cdot_{L} \operatorname{adj}\left(A \cdot{ }_{L} B\right)=-A \cdot_{L} B \cdot_{L}\left(\operatorname{adj}_{L} B \cdot \cdot_{L} a d j_{L} A\right)
$$

Since A and B are L -invertible matrices, if we L-multiply both sides of the last equation with A^{-1} and B^{-1} on the left, respectively, we obtain

$$
\operatorname{adj}_{L}\left(A \cdot_{L} B\right)=-\left(a d j_{L} B\right){ }_{L}\left(a d j_{L} A\right)
$$

which completes the proof.
Theorem 4. Let $A \in L_{n}^{n}$ be a L-invertible matrix. Then

$$
\operatorname{det}\left(\operatorname{adj}_{L} A\right)=(\operatorname{det} A)^{n-1}
$$

Proof. By theorem 2 we have

$$
\operatorname{det}\left(A \cdot{ }_{L} a d j_{L} A\right)=\operatorname{det}\left((\operatorname{det} A) I_{n}\right)=(\operatorname{det} A)^{n} \operatorname{det} I_{n}=-(\operatorname{det} A)^{n} .
$$

On the other hand by theorem 1

$$
\operatorname{det}\left(A \cdot_{L} a d j_{L} A\right)=-\operatorname{det} A \operatorname{det}\left(a d j_{L} A\right)
$$

Combining these two equations we obtain $\operatorname{det}\left(a d j_{L} A\right)=(\operatorname{det} A)^{n-1}$ and it completes the proof.

Now we are ready to present following theorem to find the inverse of a matrix using adjoint of it.

Theorem 5. Let $A \in L_{n}^{n}$ be a L-invertible matrix. Then

$$
A^{-1}=\frac{1}{\operatorname{det} A} \operatorname{adj}_{L} A .
$$

Proof. By theorem 2 we have $A{ }_{L} a d j_{L} A=(\operatorname{det} A) I_{n}$. Multiplying both sides with $\frac{1}{\operatorname{det} A} A^{-1}$ on the left, we obtain the required equality.

Example 1. The following steps result in A^{-1} for $A=\left[\begin{array}{ccc}1 & -1 & 2 \\ 2 & 1 & -3 \\ 4 & 1 & 1\end{array}\right] \in L_{3}^{3}$. The L-adjoint matrix for A is $\operatorname{adj}_{L} A=\left[\begin{array}{ccc}4 & -3 & -1 \\ 14 & -7 & 7 \\ 2 & -5 & 3\end{array}\right]$. Since $\operatorname{det} \mathrm{A}=14$, we get $A^{-1}=\left[\begin{array}{ccc}2 / 7 & -3 / 14 & -1 / 14 \\ 1 & -1 / 2 & 1 / 2 \\ 1 / 7 & -5 / 14 & 3 / 14\end{array}\right]$. It is easy to see that $A \cdot{ }_{L} A^{1}=A^{-1}{ }_{L} A=I_{3}$.

Example 2. (Inverse of Lorentz transformation in Lorentz space)
The Lorentz transformation

$$
\begin{aligned}
& x^{\prime}=\gamma(x-v t) \\
& y^{\prime}=y \\
& z^{\prime}=z \\
& t^{\prime}=\gamma\left(t-v x / c^{2}\right)
\end{aligned}
$$

or

$$
\left[\begin{array}{l}
x^{\prime} \\
y^{\prime} \\
z^{\prime} \\
t^{\prime}
\end{array}\right]=\left[\begin{array}{cccc}
-\gamma & 0 & 0 & -\gamma v \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
\gamma v / c^{2} & 0 & 0 & \gamma
\end{array}\right] \cdot\left[\begin{array}{l}
x \\
y \\
z \\
t
\end{array}\right]
$$

is a linear coordinate transformation in the space $(\mathrm{x} ; \mathrm{y} ; \mathrm{z} ; \mathrm{t})$ and can be represented by a symmetric 4×4 matrix \hat{L} with components given by

$$
\hat{L}=\left[\begin{array}{cccc}
-\gamma & 0 & 0 & -\gamma v \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
\gamma v / c^{2} & 0 & 0 & \gamma
\end{array}\right]
$$

for scalars $v, c, \gamma=\frac{1}{\sqrt{1-\frac{v^{2}}{c^{2}}}}$. Since the $\operatorname{det}(\hat{L})=1$, we find the L-inverse of the matrix \hat{L}

$$
\hat{L}^{-1}=\operatorname{adj}_{L} \hat{L}=\left[\begin{array}{cccc}
-\gamma & 0 & 0 & -\gamma v \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
\gamma \nu / c^{2} & 0 & 0 & \gamma
\end{array}\right] .
$$

In fact

$$
\hat{L} \cdot{ }_{L} \hat{L}^{-1}=\hat{L}^{-1} \cdot{ }_{L} \hat{L}=I_{n} .
$$

3.1. Shortcut for $\mathbf{2 x} \mathbf{2}$ matrice: For $A=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right] \in L_{2}^{2}$ the L-inverse may be found using the formula:

$$
A^{-1}=\frac{1}{\operatorname{det} A}\left[\begin{array}{ll}
d & b \\
c & a
\end{array}\right]
$$

Example 3. $\left[\begin{array}{ll}1 & 2 \\ 3 & 4\end{array}\right]^{-1}=-\frac{1}{2}\left[\begin{array}{ll}4 & 2 \\ 3 & 1\end{array}\right]=\left[\begin{array}{cc}-2 & -1 \\ 3 & -1 / 2\end{array}\right]$.
3.2. Augumented matrix method: Last method to find the L-inverse of a matrix is the augmented matrix method. One can use Gauss-Jordan elimination to transform $[A \vdots I]$ to $\left[I \vdots A^{-1}\right]$.

Example 4. $[A \vdots I]=\left[\begin{array}{cccc}1 & 2 & -1 & 0 \\ 3 & 4 & 0 & 1\end{array}\right] \xrightarrow{-3 R_{1}+R_{2}}\left[\begin{array}{ccccc}1 & 2 & -1 & 0 \\ 0 & -2 & 3 & 1\end{array}\right]$

$$
\begin{aligned}
& \xrightarrow{-R_{2} / 2}\left[\begin{array}{cccc}
1 & 2 & \vdots & -1 \\
0 & 1 & 0 \\
-3 / 2 & -1 / 2
\end{array}\right] \xrightarrow{-2 R_{2}+R_{1}}\left[\begin{array}{ccccc}
1 & 0 & 2 & 1 \\
0 & 1 & \vdots & -3 / 2 & -1 / 2
\end{array}\right] \\
& \xrightarrow{-R_{1}}\left[\begin{array}{cccc}
-1 & 0 & \vdots & -2 \\
0 & 1 & -1 \\
-3 / 2 & -1 / 2
\end{array}\right]=\left[I \vdots A^{-1}\right]
\end{aligned}
$$

REFERENCES

[1] Gündogan, H., Keçilioglu, O., Glasnik Matematicki, 41(61), 329, 2006.
[2] Lang, S., Linear Algebra, Addison-Wesley, 1971.
[3] Ratcliffe, J.G., Foundations of hyperbolic manifolds, 2nd Edition, Springer, 2006.

[^0]: ${ }^{1}$ Ondokuz Mayis University, Faculty of Education, Department of Mathematics, 55200 Samsun, Turkey. E-mail: mbilici@omu.edu.tr.
 ${ }^{2}$ Corresponding Author.
 Ondokuz Mayis University, Faculty of Arts and Sciences, Department of Mathematics, 55139 Samsun, Turkey. E-mail: erginbayram@yahoo.com.

