ORIGINAL PAPER

HOW TO FIND THE INVERSE OF A MATRIX IN LORENTZ SPACE

MUSTAFA BILICI¹, ERGIN BAYRAM²

Manuscript received: 31.08.2015; Accepted paper: 19.11.2015; Published online: 30.12.2015.

Abstract. In the present paper, we define adjoint of a Lorentzian matrix. We give a theorem to find the inverse of a matrix using adjoint of it. Also a shortcut to find the inverse of a 2x2 matrix is presented. Finally, we show that the inverse of a matrix can be found by changing the identity matrix with L-identity matrix in the augmented matrix and using Gauss-Jordan elimination method. Furthermore, we introduce some new theorems related with adjoint and inverse of a matrix.

Keywords: Lorentz space, Lorentzian matrix, inverse of a matrix.

1. INTRODUCTION

A real $n \times n$ matrix A is said to be Lorentzian if and only if associated linear transformation $A: \mathbb{R}^n \to \mathbb{R}^n$ defined by A(X) = AX is Lorentzian. The set of all Lorentzian $n \times n$ matrices together with matrix multiplication forms a group O(1, n-1); called the Lorentz group of $n \times n$ matrices. The group O(1, n-1) is naturally isomorphic to the group of Lorentz transformation of \mathbb{R}^n (For more details see [3]). Gündoğan and Keçilioğlu [1] defined a new matrix multiplication by using Lorentzian inner product. With this multiplication they showed that \mathbb{R}^n_n is an algebra with unit.

Inspired by the paper of Gündoğan and Keçilioğlu, we define adjoint of a Lorentzian matrix and some notions in Lorentz space. Also we express some methods to find the inverse of a square matrix and give some theorems.

2. PRELIMINARIES

Let us denote the set of all $m \times n$ matrices by \mathbb{R}_n^m . It is known that this set is a real vector space with matrix addition and multiplication (see [2]). Let L^n be the vector space \mathbb{R}^n equipped with the Lorentzian inner product

¹ Ondokuz Mayis University, Faculty of Education, Department of Mathematics, 55200 Samsun, Turkey. E-mail: <u>mbilici@omu.edu.tr</u>.

² Corresponding Author.

Ondokuz Mayis University, Faculty of Arts and Sciences, Department of Mathematics, 55139 Samsun, Turkey. E-mail: <u>erginbayram@yahoo.com</u>.

$$\langle x, y \rangle_L = -x_1 y_1 + \sum_{i=2}^n x_i y_i, x = (x_1, x_{2,...,} x_n), y = (y_1, y_{2,...,} y_n).$$

Definition 1. A function $\phi : \mathbb{R}^n \to \mathbb{R}^n$ is a Lorentz transformation if and only if

$$\langle \phi(x), \phi(y) \rangle_{L} = \langle x, y \rangle_{L}, \ \forall x, y \in \mathbb{R}^{n} [3].$$

Definition 2. Let $A = [a_{ij}] \in \mathbb{R}^m_n$, $B = [b_{ik}] \in \mathbb{R}^n_p$. Matrix multiplication " $\cdot L$ " is defined by [1] as

$$A_{.L}B = \left[-a_{i1}b_{1k} + \sum_{j=2}^{n} a_{ij}b_{jk} \right].$$

We denote \mathbb{R}_n^m with L-multiplication by L_n^m .

Definition 3. An $n \times n$ L-identity matrix according to L-multiplication, denoted by I_n, is defined by [1] as

	-1	0			0	
$I_n =$	0	1	0		0	
						•
	0			0	1	

Definition 4. An $n \times n$ matrix A is called L-invertible if there exists an $n \times n$ matrix B such that $A_L B = B_L A = I_n$. Then B is called the L-inverse of A and is denoted by A^{-1} [1].

Definition 5. Transpose of a matrix $A = [a_{ij}] \in L_n^m$ is denoted by A^T and defined as $A^T = [a_{ji}] \in L_m^n$ [1].

Definition 6. L-determinant of a matrix $A = [a_{ij}] \in \mathbb{R}^n_n$ is denoted by det A and defined as

$$\det A = \sum_{\sigma \in S_n} s(\sigma) a_{\sigma(1)} a_{\sigma(2)} \dots a_{\sigma(n)n}$$

where Sn is the set of all permutations of the set $\{1, 2, ..., n\}$ and $s(\sigma)$ is the sign of the permutation σ [1].

Theorem 1. $\forall A, B \in L_n^n$, det $(A, B) = -\det A \det B[1]$.

3. INVERSE OF A MATRIX

In this section, we present some methods to find the inverse of a matrix in Lorentz space. The first step is to define required notions for the study. Also, we give some new theorems related with adjoint and inverse of a matrix.

Definition 7. Let $A = [a_{ij}] \in L_n^m$ and α_{ij} be the cofactor of a_{ij} , i = 1, 2, ..., m; j = 1, 2, ..., n. L- adjoint of a matrix A is denoted by $adj_L A$ and

$$adj_{L}A = \begin{bmatrix} c_{11} & c_{12} & \dots & c_{1m} \\ c_{21} & c_{22} & \dots & c_{2m} \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ c_{n1} & c_{n2} & \dots & c_{nm} \end{bmatrix},$$

where $c_{ji} = \varepsilon \alpha_{ij}$ and $\varepsilon = \begin{cases} -1, 2 \le j \le n, i = 1, \\ -1, j = 1, 2 \le i \le m, \\ 1, otherwise. \end{cases}$

Theorem 2. Let $A \in L_n^m$. Then

$$A_{L}(adj_{L}A) = (adj_{L}A)_{L}A = (\det A)I_{n}.$$
Proof. Let $A = \begin{bmatrix} a_{ij} \end{bmatrix} \in L_{n}^{m}$ and $adj_{L}A = \begin{bmatrix} c_{ji} \end{bmatrix} \in L_{n}^{m}$. Then
$$A_{L}adj_{L}A = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nm} \end{bmatrix} \cdot L \begin{bmatrix} c_{11} & c_{12} & \cdots & c_{1n} \\ c_{21} & c_{22} & \cdots & c_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ c_{n1} & c_{n2} & \cdots & c_{nn} \end{bmatrix}$$

$$= \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{bmatrix} \cdot L \begin{bmatrix} \alpha_{11} & -\alpha_{21} & \cdots & -\alpha_{n1} \\ -\alpha_{12} & \alpha_{22} & \cdots & \alpha_{n2} \\ \vdots & \vdots & \ddots & \ddots & \vdots \\ -\alpha_{1n} & \alpha_{2n} & \cdots & \vdots & \alpha_{nn} \end{bmatrix}$$

$$= \begin{bmatrix} -\det A & 0 & \cdots & 0 \\ 0 & \det A & 0 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & \vdots & \vdots & 0 & \det A \end{bmatrix}$$

$$= diag(-\det A, \det A, ..., \det A)$$

$$= (\det A) \begin{bmatrix} -1 & 0 & \cdots & 0 \\ 0 & 1 & 0 & \cdots & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & \vdots & \vdots & 0 & 1 \end{bmatrix}$$

where $c_{ij}(i, j = 1, 2, ..., n)$ as in definition 7. Similarly one can show that $adj_L A_L A = (\det A)I_n$.

Theorem 3. $A, B \in L_n^n$ be L-invertible matrices. Then

$$adj_{L}(A \cdot_{L} B) = -(adj_{L}B) \cdot_{L}(adj_{L}A)$$

Proof. Observe that

$$A \cdot_{L} B \cdot_{L} adj_{L} (A \cdot_{L} B) = adj_{L} (A \cdot_{L} B) \cdot_{L} A \cdot_{L} B$$

= $(\det(A \cdot_{L} B))I_{n}$
= $-(\det A \det B)I_{n},$
$$A \cdot_{L} B \cdot_{L} (adjB \cdot_{L} adjA) = A \cdot_{L} (B \cdot_{L} adj_{L}B) \cdot_{L} adj_{L}A$$

= $A \cdot_{L} ((\det B)I_{n}) \cdot_{L} adj_{L}A$
= $\det B(A \cdot_{L} adj_{L}A) = \det B[(\det A)I_{n}]$
= $(\det A \det B)I_{n}.$

So we have

$$A \cdot_{L} B \cdot_{L} adj (A \cdot_{L} B) = -A \cdot_{L} B \cdot_{L} (adj_{L} B \cdot_{L} adj_{L} A)$$

Since A and B are L-invertible matrices, if we L-multiply both sides of the last equation with A^{-1} and B^{-1} on the left, respectively, we obtain

$$adj_{L}(A \cdot_{L} B) = -(adj_{L}B) \cdot_{L}(adj_{L}A)$$

which completes the proof.

Theorem 4. Let $A \in L_n^n$ be a L-invertible matrix. Then

 $\det\left(adj_{L}A\right) = \left(\det A\right)^{n-1}$

Proof. By theorem 2 we have

$$\det(A \cdot_L adj_L A) = \det((\det A)I_n) = (\det A)^n \det I_n = -(\det A)^n.$$

On the other hand by theorem 1

$$\det(A \cdot_L adj_L A) = -\det A \det(adj_L A).$$

Combining these two equations we obtain $\det(adj_L A) = (\det A)^{n-1}$ and it completes the proof.

Now we are ready to present following theorem to find the inverse of a matrix using adjoint of it.

Theorem 5. Let $A \in L_n^n$ be a L-invertible matrix. Then

$$A^{-1} = \frac{1}{\det A} a dj_L A \, .$$

Proof. By theorem 2 we have $A \cdot_L adj_L A = (\det A)I_n$. Multiplying both sides with $\frac{1}{\det A}A^{-1}$ on the left, we obtain the required equality.

Example 1. The following steps result in A^{-1} for $A = \begin{bmatrix} 1 & -1 & 2 \\ 2 & 1 & -3 \\ 4 & 1 & 1 \end{bmatrix} \in L_3^3$. The L-adjoint

matrix for A is
$$adj_{L}A = \begin{bmatrix} 4 & -3 & -1 \\ 14 & -7 & 7 \\ 2 & -5 & 3 \end{bmatrix}$$
. Since det A = 14, we get
$$A^{-1} = \begin{bmatrix} 2/7 & -3/14 & -1/14 \\ 1 & -1/2 & 1/2 \\ 1/7 & -5/14 & 3/14 \end{bmatrix}$$
. It is easy to see that $A \cdot_{L} A^{1} = A^{-1} \cdot_{L} A = I_{3}$.

Example 2. (Inverse of Lorentz transformation in Lorentz space) The Lorentz transformation

$$x' = \gamma (x - vt)$$

$$y' = y$$

$$z' = z$$

$$t' = \gamma (t - vx / c^{2})$$

or

$$\begin{bmatrix} x' \\ y' \\ z' \\ t' \end{bmatrix} = \begin{bmatrix} -\gamma & 0 & 0 & -\gamma v \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ \gamma v/c^2 & 0 & 0 & \gamma \end{bmatrix} \cdot {}_{L} \begin{bmatrix} x \\ y \\ z \\ t \end{bmatrix}$$

is a linear coordinate transformation in the space (x; y; z; t) and can be represented by a symmetric 4x4 matrix \hat{L} with components given by

$$\hat{L} = \begin{bmatrix} -\gamma & 0 & 0 & -\gamma \upsilon \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ \gamma \upsilon / c^2 & 0 & 0 & \gamma \end{bmatrix}$$

for scalars $v, c, \gamma = \frac{1}{\sqrt{1 - \frac{v^2}{c^2}}}$. Since the det $(\hat{L}) = 1$, we find the *L*-inverse of the matrix \hat{L}

$$\hat{L}^{-1} = adj_{L}\hat{L} = \begin{bmatrix} -\gamma & 0 & 0 & -\gamma\upsilon \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ \gamma\upsilon/c^{2} & 0 & 0 & \gamma \end{bmatrix}$$

In fact

$$\hat{L} \cdot_L \hat{L}^{-1} = \hat{L}^{-1} \cdot_L \hat{L} = I_n.$$

3.1. Shortcut for 2x2 matrice: For $A = \begin{bmatrix} a & b \\ c & d \end{bmatrix} \in L_2^2$ the *L*-inverse may be found using the formula:

$$A^{-1} = \frac{1}{\det A} \begin{bmatrix} d & b \\ c & a \end{bmatrix}$$

Example 3. $\begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}^{-1} = -\frac{1}{2} \begin{bmatrix} 4 & 2 \\ 3 & 1 \end{bmatrix} = \begin{bmatrix} -2 & -1 \\ 3 & -1/2 \end{bmatrix}.$

3.2. Augumented matrix method: Last method to find the L-inverse of a matrix is the augmented matrix method. One can use Gauss-Jordan elimination to transform $[A \\in I]$ to $[I \\in A^{-1}]$.

Example 4.
$$[A \\ \vdots I] = \begin{bmatrix} 1 & 2 & \vdots & -1 & 0 \\ 3 & 4 & 0 & 1 \end{bmatrix} \xrightarrow{-3R_1 + R_2} \begin{bmatrix} 1 & 2 & \vdots & -1 & 0 \\ 0 & -2 & 3 & 1 \end{bmatrix}$$

 $\xrightarrow{-R_2/2} \begin{bmatrix} 1 & 2 & \vdots & -1 & 0 \\ 0 & 1 & \vdots & -3/2 & -1/2 \end{bmatrix} \xrightarrow{-2R_2 + R_1} \begin{bmatrix} 1 & 0 & \vdots & 2 & 1 \\ 0 & 1 & \vdots & -3/2 & -1/2 \end{bmatrix}$
 $\xrightarrow{-R_1} \begin{bmatrix} -1 & 0 & \vdots & -2 & -1 \\ 0 & 1 & \vdots & -3/2 & -1/2 \end{bmatrix} = [I \\ \vdots A^{-1}]$

REFERENCES

- [1] Gündogan, H., Keçilioglu, O., *Glasnik Matematicki*, **41**(61), 329, 2006.
- [2] Lang, S., *Linear Algebra*, Addison-Wesley, 1971.
- [3] Ratcliffe, J.G., Foundations of hyperbolic manifolds, 2nd Edition, Springer, 2006.